论文标题

新的超对称$ ads_5 $ 5d $ n = 4 $测量超级

New supersymmetric $AdS_5$ black strings from 5D $N=4$ gauged supergravity

论文作者

Karndumri, Parinya

论文摘要

我们发现了一大批新的超对称$ ads_5 $黑弦,来自五维$ n = 4 $衡量的超级重力,与$ so(2)_d \ times so(3)so(3)so(3)so(3)$ so(3)$ Gauge Group耦合到五个矢量多重。这些解决方案具有$ ads_3 \ timesσ^2 $的近距离几何形状,$σ^2 $是两杆($ s^2 $)或双曲线空间($ h^2 $)。有四个超对称$ ads_5 $ vacua,$ n = 4 $和$ n = 2 $ supersymmetries。通过用$σ^2 $与$ so(2)\ so(2)_ {\ textrm {diag}} $和$(2)_ {\ textrm {diag}} $ gauge fields执行拓扑曲折,我们发现了许多$ ads_3 \ fielt fielt Pointies in fielt fielt fielt fielt fielt, $ ads_5 $空间。大多数解决方案采用$ ads_3 \ times h^2 $的形式,只有一个是$ ads_3 \ times s^2 $保留$ so(2)_ {\ textrm {diag}} $对称。我们还提供了相应的黑色弦乐解决方案在渐近的本地$ ads_5 $ vacua和近距离$ ads_3 \ timesσ^2 $几何形状之间插值。有许多解决方案从一个,两个或三个$ ads_5 $ vacua流到$ ads_3 \ timesσ^2 $固定点。这些解决方案也可以被视为跨尺寸的全息RG流,从$ n = 2 $和$ n = 1 $ scfts在四个维度上到二维SCFT,$ n =(2,0)$或$ n =(0,2)$ supersymmmetry。

We find a large class of new supersymmetric $AdS_5$ black strings from five-dimensional $N=4$ gauged supergravity coupled to five vector multiplets with $SO(2)_D\times SO(3)\times SO(3)$ gauge group. These solutions have near horizon geometries of the form $AdS_3\times Σ^2$ for $Σ^2$ being a two-sphere ($S^2$) or a hyperbolic space ($H^2$). There are four supersymmetric $AdS_5$ vacua with $N=4$ and $N=2$ supersymmetries. By performing topological twists along $Σ^2$ with $SO(2)\times SO(2)_{\textrm{diag}}$ and $SO(2)_{\textrm{diag}}$ gauge fields, we find a number of $AdS_3\times Σ^2$ fixed points describing near horizon geometries of black strings in asymptotically $AdS_5$ spaces. Most of the solutions take the form of $AdS_3\times H^2$ with only one being $AdS_3\times S^2$ preserving $SO(2)_{\textrm{diag}}$ symmetry. We also give the corresponding black string solutions interpolating between asymptotically locally $AdS_5$ vacua and the near horizon $AdS_3\times Σ^2$ geometries. There are a number of solutions flowing from one, two or three $AdS_5$ vacua to an $AdS_3\times Σ^2$ fixed point. These solutions can also be considered as holographic RG flows across dimensions from $N=2$ and $N=1$ SCFTs in four dimensions to two-dimensional SCFTs with $N=(2,0)$ or $N=(0,2)$ supersymmetry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源