论文标题
黑洞光子环的自适应分析射线跟踪
Adaptive Analytical Ray Tracing of Black Hole Photon Rings
论文作者
论文摘要
事件地平线望远镜的最新干涉观察已经从附近超级黑洞附近的来源解析了地平线尺度的发射。未来的空间干涉仪有望测量“光子环” - 一种狭窄,环形,镜头的特征,通过一般相对性预测,但尚未观察到 - 从而打开了一个新的窗口,成为强力较强的重力。在这里,我们提出AART:一种自适应分析射线追踪代码,该代码利用了Kerr时空中光传播的整合性,以快速计算高分辨率的模拟黑洞图像,以及在很长的空间地面底座上可访问的相应无线电可访问性。这些代码在非均匀自适应网格上示例图像,该图像是专门针对Kerr几何形状的镜头行为量身定制的,因此特别适合研究光子环。这种数值方法确保了在长基线上正确计算干涉符号,并且代码的模块化允许详细研究具有复杂排放概况和时间变异性的赤道源。为了展示其功能,我们使用AART模拟了一部随机,非平稳,非轴对称赤道源的黑洞电影。通过将每个快照的可见性幅度取得时间平均,我们能够提取光子环的投影直径并通过一般相对性恢复所预测的形状。
Recent interferometric observations by the Event Horizon Telescope have resolved the horizon-scale emission from sources in the vicinity of nearby supermassive black holes. Future space-based interferometers promise to measure the "photon ring"--a narrow, ring-shaped, lensed feature predicted by general relativity, but not yet observed--and thereby open a new window into strong gravity. Here we present AART: an Adaptive Analytical Ray-Tracing code that exploits the integrability of light propagation in the Kerr spacetime to rapidly compute high-resolution simulated black hole images, together with the corresponding radio visibility accessible on very long space-ground baselines. The code samples images on a nonuniform adaptive grid that is specially tailored to the lensing behavior of the Kerr geometry and is therefore particularly well-suited to studying photon rings. This numerical approach guarantees that interferometric signatures are correctly computed on long baselines, and the modularity of the code allows for detailed studies of equatorial sources with complex emission profiles and time variability. To demonstrate its capabilities, we use AART to simulate a black hole movie of a stochastic, non-stationary, non-axisymmetric equatorial source; by time-averaging the visibility amplitude of each snapshot, we are able to extract the projected diameter of the photon ring and recover the shape predicted by general relativity.