论文标题

使用连续的弱测量值的时间依赖性汉密尔顿重建

Time-Dependent Hamiltonian Reconstruction using Continuous Weak Measurements

论文作者

Siva, Karthik, Koolstra, Gerwin, Steinmetz, John, Livingston, William P., Das, Debmalya, Chen, Larry, Kreikebaum, John Mark, Stevenson, Noah, Jünger, Christian, Santiago, David I., Siddiqi, Irfan, Jordan, Andrew N.

论文摘要

重建量子系统的哈密顿量是表征和认证量子处理器和模拟器的必不可少的任务。现有技术要么依赖于相干时间演化之前和之后系统的投影测量值,并且不会明确重建全日制依赖的哈密顿量或间断层析成像的中断演变。在这里,我们通过实验表明,可以通过连续的弱测量值重建一个未知的时间依赖性的哈密顿量,并在两个超导式传输的系统中,与通量可触发的耦合器相连的系统中,同时进行了连贯的时间演变。与以前的工作相反,我们的技术不需要中断,这会扭曲回收的哈密顿量。我们引入了一种算法,该算法从不完整的连续测量集中恢复了哈密顿量和密度矩阵,并证明它可靠地提取了各种单个量子的振幅并纠缠了两个Qubit Hamiltonians。我们进一步证明了这项技术如何揭示与传统技术否则将错过的理论控制哈密顿式的偏差。我们的工作为连续弱测量值开辟了新的应用,例如研究门中的非理想性,认证模拟量子模拟器和执行量子计量学。

Reconstructing the Hamiltonian of a quantum system is an essential task for characterizing and certifying quantum processors and simulators. Existing techniques either rely on projective measurements of the system before and after coherent time evolution and do not explicitly reconstruct the full time-dependent Hamiltonian or interrupt evolution for tomography. Here, we experimentally demonstrate that an a priori unknown, time-dependent Hamiltonian can be reconstructed from continuous weak measurements concurrent with coherent time evolution in a system of two superconducting transmons coupled by a flux-tunable coupler. In contrast to previous work, our technique does not require interruptions, which would distort the recovered Hamiltonian. We introduce an algorithm which recovers the Hamiltonian and density matrix from an incomplete set of continuous measurements and demonstrate that it reliably extracts amplitudes of a variety of single qubit and entangling two qubit Hamiltonians. We further demonstrate how this technique reveals deviations from a theoretical control Hamiltonian which would otherwise be missed by conventional techniques. Our work opens up novel applications for continuous weak measurements, such as studying non-idealities in gates, certifying analog quantum simulators, and performing quantum metrology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源