论文标题

FOVEATED渲染:最新的调查

Foveated Rendering: a State-of-the-Art Survey

论文作者

Wang, Lili, Shi, Xuehuai, Liu, Yi

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Recently, virtual reality (VR) technology has been widely used in medical, military, manufacturing, entertainment, and other fields. These applications must simulate different complex material surfaces, various dynamic objects, and complex physical phenomena, increasing the complexity of VR scenes. Current computing devices cannot efficiently render these complex scenes in real time, and delayed rendering makes the content observed by the user inconsistent with the user's interaction, causing discomfort. Foveated rendering is a promising technique that can accelerate rendering. It takes advantage of human eyes' inherent features and renders different regions with different qualities without sacrificing perceived visual quality. Foveated rendering research has a history of 31 years and is mainly focused on solving the following three problems. The first is to apply perceptual models of the human visual system into foveated rendering. The second is to render the image with different qualities according to foveation principles. The third is to integrate foveated rendering into existing rendering paradigms to improve rendering performance. In this survey, we review foveated rendering research from 1990 to 2021. We first revisit the visual perceptual models related to foveated rendering. Subsequently, we propose a new foveated rendering taxonomy and then classify and review the research on this basis. Finally, we discuss potential opportunities and open questions in the foveated rendering field. We anticipate that this survey will provide new researchers with a high-level overview of the state of the art in this field, furnish experts with up-to-date information and offer ideas alongside a framework to VR display software and hardware designers and engineers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源