论文标题

部分可观测时空混沌系统的无模型预测

A note on the maximal operator on weighted Morrey spaces

论文作者

Lerner, Andrei K.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In this paper we consider weighted Morrey spaces ${\mathcal M}_{λ, {\mathcal F}}^p(w)$ adapted to a family of cubes ${\mathcal F}$, with norm $$\|f\|_{{\mathcal M}_{λ, {\mathcal F}}^p(w)}:=\sup_{Q\in {\mathcal F}}\left(\frac{1}{|Q|^λ}\int_Q|f|^pw\right)^{1/p},$$ and the question we deal with is whether a Muckenhoupt-type condition characterizes the boundedness of the Hardy--Littlewood maximal operator on ${\mathcal M}_{λ, {\mathcal F}}^p(w)$. In the case of the global Morrey spaces (when ${\mathcal F}$ is the family of all cubes in ${\mathbb R}^n$) this question is still open. In the case of the local Morrey spaces (when ${\mathcal F}$ is the family of all cubes centered at the origin) this question was answered positively in a recent work of Duoandikoetxea--Rosenthal \cite{DR21}. We obtain an extension of \cite{DR21} by showing that the answer is positive when ${\mathcal F}$ is the family of all cubes centered at a sequence of points in ${\mathbb R}^n$ satisfying a certain lacunary-type condition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源