论文标题
周期性度量图上半连接klein-gordon方程的通气解决方案
Breather solutions for a semilinear Klein-Gordon equation on a periodic metric graph
论文作者
论文摘要
我们考虑非线性klein-gordon方程$ \ partial_t^2u(x,x,t) - \ partial_x^2u(x,x,x,t)+αu(x,x,x,t)= \ pm | u(x,x,x,x,x,t)|^{p-1} u(x,p-1} u(x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,t)$ for $ p> p> 1 $ per for kirch for kirch for kirch f> 1 $。在适当的假设下,我们证明了通过变异方法无限许多空间定位的时间周期性溶液(呼吸器)的存在和规律性。我们将结果与以前通过空间动力学和中心歧管技术获得的结果进行了比较。此外,我们推断解决方案的规律性属性,并表明它们是相应初始值问题的弱解决方案。我们的方法依赖于不确定功能的关键点,浓度紧凑性原理以及功能分析框架的正确设置。与使用各种技术的呼吸器的早期工作相比,已经实现了嵌入性能的重大改进。这尤其允许避免对指数$ p> 1 $的所有限制并获得更高的规律性。
We consider the nonlinear Klein-Gordon equation $\partial_t^2u(x,t)-\partial_x^2u(x,t)+αu(x,t)=\pm|u(x,t)|^{p-1}u(x,t)$ on a periodic metric graph (necklace graph) for $p>1$ with Kirchhoff conditions at the vertices. Under suitable assumptions on the frequency we prove the existence and regularity of infinitely many spatially localized time-periodic solutions (breathers) by variational methods. We compare our results with previous results obtained via spatial dynamics and center manifold techniques. Moreover, we deduce regularity properties of the solutions and show that they are weak solutions of the corresponding initial value problem. Our approach relies on the existence of critical points for indefinite functionals, the concentration compactness principle, and the proper set-up of a functional analytic framework. Compared to earlier work for breathers using variational techniques, a major improvement of embedding properties has been achieved. This allows in particular to avoid all restrictions on the exponent $p>1$ and to achieve higher regularity.