论文标题
在高红移时驱动银河系的银河流出驱动银河流出的恒星反馈效率低下
The inefficiency of stellar feedback in driving galactic outflows in massive galaxies at high redshift
论文作者
论文摘要
最近的观察结果表明,银河流出在高红移星系中无处不在,包括正常的恒星形成星系,类星体宿主和尘土飞扬的恒星形成星系(DSFGS)。但是,流出对宿主演变的影响仍然是一个悬而未决的问题。在这里,我们分析了大量光环中星系星系的恒星形成历史(SFH)和银河流出特性($ 10^{12} M _ {\ odot} <m _ {\ rm vir} <5 \ rm vir} <5 \ times 10^{12} {12} {12} m _ sim {\ odot} $。 MassiveFire Suite,作为现实环境(火灾)项目反馈的一部分。模拟使用FIRE-2模型进行,该模型不包括活性银河核(AGN)的反馈。模拟星系类似于$ z> 4 $ dsfgs,SFRS为$ \ sim 1000 \ m _ {\ odot} \ rm yr^{ - 1} $,分子气体和$ M _ {\ rm mol}然而,模拟星系的特征是圆速度高于高Z DSFG中的循环速度。恒星反馈的质量负载因子的量为$ \ sim 0.1 $,这意味着恒星反馈在驱动银河流出效率低下,而在较短的时间范围内,恒星形成消耗的气体比从跨层介质中排出的时间更短。我们还发现,在该制度中,恒星反馈在自我调节的恒星形成方面效率高,每个动态时间平均综合星星形成效率(SFE)为$ 30 \%\%$。最后,与较低红移的类似大规模光环中托管的Fire-2星系相比,我们发现高红移样品中的质量负载因子和较高的SFE。我们认为,这两种效应均来自较高的总和气体表面密度,这些密度较高,$ -Z $ sumpersystems。
Recent observations indicate that galactic outflows are ubiquitous in high redshift galaxies, including normal star forming galaxies, quasar hosts, and dusty star forming galaxies (DSFGs). However, the impact of outflows on the evolution of their hosts is still an open question. Here, we analyse the star formation histories (SFH) and galactic outflow properties of galaxies in massive haloes ($10^{12}M_{\odot}<M_{\rm vir} <5\times 10^{12}M_{\odot}$) at $z\gtrsim5.5$ in three zoom-in cosmological simulations from the MassiveFIRE suite, as part of the Feedback In Realistic Environments (FIRE) project. The simulations were run with the FIRE-2 model, which does not include feedback from active galactic nuclei (AGN). The simulated galaxies resemble $z>4$ DSFGs, with SFRs of $\sim 1000\ M_{\odot}\rm yr^{-1}$ and molecular gas masses of $M_{\rm mol}\sim 10^{10}\ M_{\odot}$. However, the simulated galaxies are characterised by higher circular velocities than those observed in high-z DSFGs. The mass loading factors from stellar feedback are of the order of $\sim 0.1$, implying that stellar feedback is inefficient in driving galactic outflows and gas is consumed by star formation on much shorter time-scales than it is expelled from the interstellar medium (ISM). We also find that stellar feedback is highly inefficient in self-regulating star formation in this regime, with an average integrated star formation efficiency (SFE) per dynamical time of $30\%$. Finally, compared to FIRE-2 galaxies hosted in similarly massive haloes at lower redshift, we find lower mass loading factors and higher SFEs in the high redshift sample. We argue that both effects originate from the higher total and gas surface densities that characterise high$-z$ massive systems.