论文标题
旋转玻色孔Dicke模型中的混乱和热化
Chaos and Thermalization in the Spin-Boson Dicke Model
论文作者
论文摘要
我们详细介绍了混乱与旋转玻色孔模型中的热化发作之间的联系。该系统具有定义明确的经典限制,并具有两个自由度,并且既有规则和混乱的区域。我们对征素体预期值的研究以及光子数量的异对角元素的分布和激发原子的数量验证了混乱区域中对角线和非基因对征态热假设假说(ETH),从而确保了热化。 ETH的有效性反映了本征态的混乱结构,我们使用von Neumann纠缠熵和香农熵来证实。我们对香农熵的结果也使所谓的“有效基础”的优势明显在研究迪克模型的无限频谱时,与广泛使用的fock基础相比。有效的基础使我们可以访问比Fock基础上可以达到的融合状态更大的融合状态。
We present a detailed analysis of the connection between chaos and the onset of thermalization in the spin-boson Dicke model. This system has a well-defined classical limit with two degrees of freedom, and it presents both regular and chaotic regions. Our studies of the eigenstate expectation values and the distributions of the off-diagonal elements of the number of photons and the number of excited atoms validate the diagonal and off-diagonal eigenstate thermalization hypothesis (ETH) in the chaotic region, thus ensuring thermalization. The validity of the ETH reflects the chaotic structure of the eigenstates, which we corroborate using the von Neumann entanglement entropy and the Shannon entropy. Our results for the Shannon entropy also make evident the advantages of the so-called "efficient basis" over the widespread employed Fock basis when investigating the unbounded spectrum of the Dicke model. The efficient basis gives us access to a larger number of converged states than what can be reached with the Fock basis.