论文标题

机床的离散事件动力学和加工动力学的集成:建模,分析和算法

Integration of discrete-event dynamics and machining dynamics for machine tool: modeling, analysis and algorithms

论文作者

Ma, Mason, Ren, Alisa, Tyler, Christopher, Karandikar, Jaydeep, Gomez, Michael, Shi, Tony, Schmitz, Tony

论文摘要

加工动力学研究通过提供稳定的主轴速度和切割深度的组合,为加工操作奠定了坚实的基础。此外,已经应用了机器学习来预测工具寿命,这是切割速度的函数。但是,现有的研究并未考虑机械车间中的离散事件动态,即机床需要在各种实际生产要求下处理一系列队列中的一系列零件。本文介绍了离散事件动力学和加工动力学的集成,以在加工中节省成本。我们首先为所研究的机床的集成优化问题提出了基于学习的成本功能。拟议的成本功能利用预测的工具寿命在不同的稳定切割速度下,以进一步优化机床的速度选择,以处理机械车间的离散事项动态。然后,根据实际生产要求,我们为相关的集成优化问题开发了几种数学优化模型,并考虑成本,制造日期和到期日。数值结果表明我们提出的方法的有效性以及在实践中使用的潜力。

Machining dynamics research lays a solid foundation for machining operations by providing stable combinations of spindle speed and depth of cut. Furthermore, machine learning has been applied to predict tool life as a function of cutting speed. However, the existing research does not consider the discrete-event dynamics in machine shop, i.e., the machine tool needs to process a series of parts in queue under various practical production requirements. This paper addresses the integration of discrete-event dynamics and machining dynamics to achieve cost savings in machining. We first propose a learning-based cost function for the studied integrated optimization problem of machine tool. The proposed cost function utilizes the predicted tool life under different stable cutting speeds for further optimizing speed selection of machine tool to deal with the discrete-event dynamics in machine shop. Then, according to the practical production requirements, we develop several mathematical optimization models for the related integrated optimization problems with the consideration of cost, makespan and due date. Numerical results show the effectiveness of our proposed methods and also the potential to be used in practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源