论文标题
可解释的,自适应和联邦医学的人工智能
Explainable, Domain-Adaptive, and Federated Artificial Intelligence in Medicine
论文作者
论文摘要
人工智能(AI)继续在许多领域中转化数据分析。每个领域的进展是由越来越多的注释数据,增加计算资源和技术创新的驱动的。在医学中,数据的敏感性,任务的复杂性,潜在的高风险以及问责制的要求引起了一系列特定的挑战。在这篇综述中,我们专注于三种关键的方法论方法,这些方法解决了AI驱动的医疗决策中的一些特定挑战。 (1)可解释的AI旨在为每个输出产生人性化的理由。如果结果看起来合理并符合临床医生的期望,则此类模型会增加信心。但是,没有合理的解释并不意味着不准确的模型。尤其是在高度非线性的复杂模型中,这些模型被调整为最大化精度,这种可解释的表示仅反映了一小部分理由。 (2)域的适应和传输学习使AI模型能够在多个领域进行训练和应用。例如,基于在不同采集硬件上获取的图像的分类任务。 (3)联合学习使学习大规模模型无需暴露敏感的个人健康信息。与集中学习机器可以访问整个培训数据的集中式AI学习不同,联合学习过程通过仅交换参数更新而不是个人健康数据来遍历多个站点的模型。该叙述性评论涵盖了基本概念,突出了该领域的相关角石和最先进的研究,并讨论了观点。
Artificial intelligence (AI) continues to transform data analysis in many domains. Progress in each domain is driven by a growing body of annotated data, increased computational resources, and technological innovations. In medicine, the sensitivity of the data, the complexity of the tasks, the potentially high stakes, and a requirement of accountability give rise to a particular set of challenges. In this review, we focus on three key methodological approaches that address some of the particular challenges in AI-driven medical decision making. (1) Explainable AI aims to produce a human-interpretable justification for each output. Such models increase confidence if the results appear plausible and match the clinicians expectations. However, the absence of a plausible explanation does not imply an inaccurate model. Especially in highly non-linear, complex models that are tuned to maximize accuracy, such interpretable representations only reflect a small portion of the justification. (2) Domain adaptation and transfer learning enable AI models to be trained and applied across multiple domains. For example, a classification task based on images acquired on different acquisition hardware. (3) Federated learning enables learning large-scale models without exposing sensitive personal health information. Unlike centralized AI learning, where the centralized learning machine has access to the entire training data, the federated learning process iteratively updates models across multiple sites by exchanging only parameter updates, not personal health data. This narrative review covers the basic concepts, highlights relevant corner-stone and state-of-the-art research in the field, and discusses perspectives.