论文标题
部分可观测时空混沌系统的无模型预测
More Effective Centrality-Based Attacks on Weighted Networks
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Only when understanding hackers' tactics, can we thwart their attacks. With this spirit, this paper studies how hackers can effectively launch the so-called 'targeted node attacks', in which iterative attacks are staged on a network, and in each iteration the most important node is removed. In the existing attacks for weighted networks, the node importance is typically measured by the centralities related to shortest-path lengths, and the attack effectiveness is also measured mostly by length-related metrics. However, this paper argues that flows can better reflect network functioning than shortest-path lengths for those networks with carrying traffic as the main functionality. Thus, this paper proposes metrics based on flows for measuring the node importance and the attack effectiveness, respectively. Our node importance metrics include three flow-based centralities (flow betweenness, current-flow betweenness and current-flow closeness), which have not been proposed for use in the attacks on weighted networks yet. Our attack effectiveness metric is a new one proposed by us based on average network flow. Extensive experiments on both artificial and real-world networks show that the attack methods with our three suggested centralities are more effective than the existing attack methods when evaluated under our proposed attack effectiveness metric.