论文标题

使用标量引起的重力波从Nanograv的Pulsar-tim-tim-tim-tim-tim-tim-timpation Wave产生贝叶斯对原始黑洞的影响

Bayesian Implications for the Primordial Black Holes from NANOGrav's Pulsar-Timing Data Using the Scalar-Induced Gravitational Waves

论文作者

Zhao, Zhi-Chao, Wang, Sai

论文摘要

假设Nanograv 12。5年数据集中的常识过程具有标量引起的重力波的起源,我们研究了原始曲率扰动的增强和原始黑洞的质量功能,首次通过执行贝叶斯参数推断。我们在95 \%的置信度处获得了光谱振幅的下限,即$ \ Mathcal {a} \ gtrsim10^{ - 2} $,假设具有原始曲率扰动的功率谱以遵循带有logorordial曲率的功能谱以遵循带有log-ordortal分布的功能,则具有带有idth $σ$的函数。在$σ\ rightArrow0 $的情况下,我们发现具有$ 2 \ times10^{ - 4} -10^{ - 2} $太阳质量的原始黑洞至少可以构成深色物质的$ 10^{ - 6} $。对于$σ$的较大值,在$ 4 \ times10^{ - 3} -0.2 $太阳质量的情况下,此类质量范围转移到更大的范围内,例如$ 4 \ times10^{ - 3} -0.2 $ solar Mass。我们希望计划的重力波实验在$ 10^{ - 4} $到$ 10^{ - 7} $的范围内对$ \ Mathcal {a} $具有最佳敏感性,具体取决于实验设置。有了这种敏感性,我们可以在整个参数空间中搜索原始的黑洞,尤其是在$ 10^{ - 16} $至$ 10^{ - 11} $太阳团的质量范围内,在那里它们可以考虑所有暗物质。此外,强调多波段探测器网络的重要性以实现我们的理论期望。

Assuming that the common-spectrum process in the NANOGrav 12.5-year dataset has an origin of scalar-induced gravitational waves, we study the enhancement of primordial curvature perturbations and the mass function of primordial black holes, by performing the Bayesian parameter inference for the first time. We obtain lower limits on the spectral amplitude, i.e., $\mathcal{A}\gtrsim10^{-2}$ at 95\% confidence level, when assuming the power spectrum of primordial curvature perturbations to follow a log-normal distribution function with width $σ$. In the case of $σ\rightarrow0$, we find that the primordial black holes with $2\times10^{-4}-10^{-2}$ solar mass are allowed to compose at least a fraction $10^{-6}$ of dark matter. Such a mass range is shifted to more massive regimes for larger values of $σ$, e.g., to a regime of $4\times10^{-3}-0.2$ solar mass in the case of $σ=1$. We expect the planned gravitational-wave experiments to have their best sensitivity to $\mathcal{A}$ in the range of $10^{-4}$ to $10^{-7}$, depending on the experimental setups. With this level of sensitivity, we can search for primordial black holes throughout the entire parameter space, especially in the mass range of $10^{-16}$ to $10^{-11}$ solar masses, where they could account for all dark matter. In addition, the importance of multi-band detector networks is emphasized to accomplish our theoretical expectation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源