论文标题

不规则的高维产品图上的渗透

Percolation on Irregular High-dimensional Product Graphs

论文作者

Diskin, Sahar, Erde, Joshua, Kang, Mihyun, Krivelevich, Michael

论文摘要

我们考虑在高维产品图上的债券渗透$ g = \ square_ {i = 1}^tg^{(i)} $,其中$ \ square $表示笛卡尔产品。我们将$ g^{(i)} $称为基本图和产品图$ g $主机图。最近,莉切夫(Lichev)表明,在基本图的等速度属性的温和要求下,当$ p $ able $ \ frac {1} {d} $ $ p $时,渗透图$ g_p $的组件结构会经历一个相变,其中$ d $是主机图的平均程度。 在超临界制度中,我们通过证明巨型组件实际上是独特的,加强了LiChev的结果,其中所有其他组件$ o(| g |)$,并确定巨人的急剧渐近顺序。此外,我们回答了Lichev提出的两个问题:首先,我们提供了一个结构,表明对有限度的要求对于可能出现线性订单组件是必要的;其次,我们表明,基本图上的等仪要求实际上在维度上是超指定性的。最后,在亚临界方案中,我们举一个例子表明,在不规则的高维产品图的情况下,可以有一个多种多样的组件具有很高的概率,这与Erdős-rényi随机图中所看到的定量行为非常不同,在percolated超管中,在任何正常的高维生产图中,在任何正常的高维生产图中,如有所示。

We consider bond percolation on high-dimensional product graphs $G=\square_{i=1}^tG^{(i)}$, where $\square$ denotes the Cartesian product. We call the $G^{(i)}$ the base graphs and the product graph $G$ the host graph. Very recently, Lichev showed that, under a mild requirement on the isoperimetric properties of the base graphs, the component structure of the percolated graph $G_p$ undergoes a phase transition when $p$ is around $\frac{1}{d}$, where $d$ is the average degree of the host graph. In the supercritical regime, we strengthen Lichev's result by showing that the giant component is in fact unique, with all other components of order $o(|G|)$, and determining the sharp asymptotic order of the giant. Furthermore, we answer two questions posed by Lichev: firstly, we provide a construction showing that the requirement of bounded-degree is necessary for the likely emergence of a linear order component; secondly, we show that the isoperimetric requirement on the base graphs can be, in fact, super-exponentially small in the dimension. Finally, in the subcritical regime, we give an example showing that in the case of irregular high-dimensional product graphs, there can be a polynomially large component with high probability, very much unlike the quantitative behaviour seen in the Erdős-Rényi random graph and in the percolated hypercube, and in fact in any regular high-dimensional product graphs, as shown by the authors in a companion paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源