论文标题
利用多流信息融合在低截至方案中的轨迹预测:多通道图卷积方法
Leveraging Multi-stream Information Fusion for Trajectory Prediction in Low-illumination Scenarios: A Multi-channel Graph Convolutional Approach
论文作者
论文摘要
轨迹预测是自动驾驶汽车的基本问题和挑战。早期作品主要集中于设计复杂的体系结构,以在正常刷新环境中为基于深度学习的预测模型设计,这些模型无法应对低光条件。本文通过利用多流信息融合来灵活地整合图像,光流和对象轨迹信息,提出了一种新型的轨迹预测方法。图像通道采用卷积神经网络(CNN)和长期短期内存(LSTM)网络来从相机中提取时间信息。光流通道用于捕获相邻摄像机框架之间的相对运动模式,并通过时空图卷积网络(ST-GCN)建模。轨迹通道用于识别车辆之间的高级相互作用。最后,在预测模块中有效地融合了所有三个通道的信息,以在低弹片条件下生成周围车辆的未来轨迹。拟议的多通道图卷积方法在HEV-I和新生成的Dark-Hev-I,以自我为中心的视觉数据集进行了验证,该数据集主要集中在城市交叉点方案上。结果表明,在标准和低截至方案中,我们的方法优于基准。此外,我们的方法是通用的,适用于具有不同类型的感知数据的方案。该方法的源代码可在https://github.com/tommygong08/msif} {https://github.com/tommygong.com/tommygong08/msif中获得。
Trajectory prediction is a fundamental problem and challenge for autonomous vehicles. Early works mainly focused on designing complicated architectures for deep-learning-based prediction models in normal-illumination environments, which fail in dealing with low-light conditions. This paper proposes a novel approach for trajectory prediction in low-illumination scenarios by leveraging multi-stream information fusion, which flexibly integrates image, optical flow, and object trajectory information. The image channel employs Convolutional Neural Network (CNN) and Long Short-term Memory (LSTM) networks to extract temporal information from the camera. The optical flow channel is applied to capture the pattern of relative motion between adjacent camera frames and modelled by Spatial-Temporal Graph Convolutional Network (ST-GCN). The trajectory channel is used to recognize high-level interactions between vehicles. Finally, information from all the three channels is effectively fused in the prediction module to generate future trajectories of surrounding vehicles in low-illumination conditions. The proposed multi-channel graph convolutional approach is validated on HEV-I and newly generated Dark-HEV-I, egocentric vision datasets that primarily focus on urban intersection scenarios. The results demonstrate that our method outperforms the baselines, in standard and low-illumination scenarios. Additionally, our approach is generic and applicable to scenarios with different types of perception data. The source code of the proposed approach is available at https://github.com/TommyGong08/MSIF}{https://github.com/TommyGong08/MSIF.