论文标题

耦合聚类理论:朝向代数几何配方

Coupled cluster theory: Towards an algebraic geometry formulation

论文作者

Faulstich, Fabian M., Oster, Mathias

论文摘要

耦合群集理论可以说是使用最广泛使用的高准确计算量子化学方法。尽管该方法的整体计算成功,但其数学理解迄今仍仅限于功能分析领域的结果。耦合群集振幅是耦合群集理论中的靶向对象,对应于耦合群集方程的溶液,该群集方程最多是第四级的多项式方程系统。到目前为止,耦合群集Ansatz的电子schrödinger方程和非线性的高维度已经停滞了对该多项式系统的正式分析。在本文中,我们提出了代数研究,该研究阐明了耦合的群集方程和该ANSATZ的根结构。这对于耦合群集计算的后验评估非常重要。为此,我们通过牛顿多面体研究根结构。我们得出了一般的V-描述,随后将其转变为明确示例的H-描述。这种观点揭示了Pauli的排除原理与牛顿多面体的几何结构之间的明显联系。我们还提出了一个偶联的群集方程的替代表征,该群集群集方程在单打和双倍的代数变体上,并作为具有某些稀疏模式的代数多项式。此外,我们提供了两个计算系统的数值模拟,即四个自旋轨道系统中的两个电子和六个自旋轨道系统中的三个电子。这些模拟提供了对耦合群集Ansatz截断时耦合簇溶液的根结构的新见解。

Coupled cluster theory produced arguably the most widely used high-accuracy computational quantum chemistry methods. Despite the approach's overall great computational success, its mathematical understanding is so far limited to results within the realm of functional analysis. The coupled cluster amplitudes, which are the targeted objects in coupled cluster theory, correspond to solutions to the coupled cluster equations, which is a system of polynomial equations of at most degree four. The high dimensionality of the electronic Schrödinger equation and the non-linearity of the coupled cluster ansatz have so far stalled a formal analysis of this polynomial system. In this article, we present algebraic investigations that shed light on the coupled cluster equations and the root structure of this ansatz. This is of importance for the a posteriori evaluation of coupled cluster calculations. To that end, we investigate the root structure by means of Newton polytopes. We derive a general v-description, which is subsequently turned into an h-description for explicit examples. This perspective reveals an apparent connection between Pauli's exclusion principle and the geometrical structure of the Newton polytopes. We also propose an alternative characterization of the coupled cluster equations projected onto singles and doubles as cubic polynomials on an algebraic variety with certain sparsity patterns. Moreover, we provide numerical simulations of two computationally tractable systems, namely, the two electrons in four spin-orbitals system and the three electrons in six spin-orbitals system. These simulations provide novel insight into the root structure of the coupled cluster solutions when the coupled cluster ansatz is truncated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源