论文标题

$ p $ adadic多项式的密度生成固定分裂类型的扩展

Density of $p$-adic polynomials generating extensions with fixed splitting type

论文作者

Yin, John

论文摘要

我们证明,多项式的密度$ p(x)= \ sum_ {i = 0}^n a_n x^n $在本地字段上$ k $生成具有指定分裂类型的étale扩展名,在拆分类型的情况下,$ k $的残基大小的大小是有理功能的。此外,我们为这些密度提供了可计算的递归公式,并计算出该密度的渐近物,因为残基场的大小倾向于无穷大。

We prove that the density of polynomials $P(x)=\sum_{i=0}^n a_n x^n$ over a local field $K$ generating an étale extension with specified splitting type is a rational function in terms of the size of the residue field of $K$ in the case where the splitting type is tame. Moreover, we give a computable recursive formula for these densities and compute the asymptotics of this density as the size of the residue field tends to infinity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源