论文标题
存在涉及区域分数laplacian的椭圆方程的解决方案(0,\ frac12] $
Existence of solutions to elliptic equations involving regional fractional Laplacian with order $(0,\frac12]$
论文作者
论文摘要
我们本文的目的是通过区域分数laplacian $$调查椭圆方程的积极解决方案 ( - δ)_ {b_1}^s u +u = h(x,u)\ quad {\ rm in} \ \,b_1,\ qquad u \ in C_0(B_1), $$ 其中$(δ)_ {b_1}^s $带有$ s \ in(0,\ frac12] $是区域分数laplacian,而$ h $是非线性。 通常,预计在(0,\ frac12] $ in(0,\ frac12] $)的区域分数拉普拉斯的方程中,未预计在边界处消失的阳性解决方案。 $ h(x,t)= f(x)$或$ h(x,t)= h_1(x)\,t^p+εh_2(x)$,其中$ p> 1 $,$ε> 0 $ small和$ f,h_1,h_1,h_2 $在适当的条件下是持续的,rady和降低的条件。
Our purpose of this paper is to investigate positive solutions of the elliptic equation with regional fractional Laplacian $$ ( - Δ)_{B_1}^s u +u= h(x,u) \quad {\rm in} \ \, B_1,\qquad u\in C_0(B_1), $$ where $( - Δ)_{B_1}^s$ with $s\in(0,\frac12]$ is the regional fractional Laplacian and $h$ is the nonlinearity. Ordinarily, positive solutions vanishing at the boundary are not anticipated to be derived for the equations with regional fractional Laplacian of order $s\in(0,\frac12]$. Positive solutions are obtained when the nonlinearity assumes the following two models: $h(x,t)=f(x)$ or $h(x,t)=h_1(x)\, t^p+ εh_2(x)$, where $p>1$, $ε>0$ small and $f, h_1, h_2$ are Hölder continuous, radially symmetric and decreasing functions under suitable conditions.