论文标题

水下图像增强的语义感知纹理结构功能协作

Semantic-aware Texture-Structure Feature Collaboration for Underwater Image Enhancement

论文作者

Wang, Di, Ma, Long, Liu, Risheng, Fan, Xin

论文摘要

水下图像增强已成为海洋工程和水生机器人技术中重要技术的一个有吸引力的话题。但是,数据集数量有限,手工制作的地面真相却削弱了其稳健性,无法看到,并妨碍了对高级视觉任务的应用。为了解决上述局限性,我们与高级语义意识预识的模型合作开发了一个高效而紧凑的增强网络,旨在利用其分层特征表示作为低级水下图像增强的辅助。具体而言,我们倾向于将浅层特征作为纹理表征为纹理,而深层特征则是语义感知模型中的结构,并提出一个多路上的上下文特征细化模块(CFRM),以优化多个尺度的特征,并模拟不同特征之间的相关性。此外,还设计了一个功能支配网络,以对汇总纹理和结构特征进行渠道调制,以适应增强网络的不同特征模式。基准上的广泛实验表明,所提出的算法取得了更具吸引力的结果,并且超过了大幅度的最先进方法。我们还将提出的算法应用于水下显着对象检测任务,以揭示高级视觉任务的语义感知能力。该代码可在STSC上找到。

Underwater image enhancement has become an attractive topic as a significant technology in marine engineering and aquatic robotics. However, the limited number of datasets and imperfect hand-crafted ground truth weaken its robustness to unseen scenarios, and hamper the application to high-level vision tasks. To address the above limitations, we develop an efficient and compact enhancement network in collaboration with a high-level semantic-aware pretrained model, aiming to exploit its hierarchical feature representation as an auxiliary for the low-level underwater image enhancement. Specifically, we tend to characterize the shallow layer features as textures while the deep layer features as structures in the semantic-aware model, and propose a multi-path Contextual Feature Refinement Module (CFRM) to refine features in multiple scales and model the correlation between different features. In addition, a feature dominative network is devised to perform channel-wise modulation on the aggregated texture and structure features for the adaptation to different feature patterns of the enhancement network. Extensive experiments on benchmarks demonstrate that the proposed algorithm achieves more appealing results and outperforms state-of-the-art methods by large margins. We also apply the proposed algorithm to the underwater salient object detection task to reveal the favorable semantic-aware ability for high-level vision tasks. The code is available at STSC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源