论文标题

分层谎言组的富士

Fujita exponent on stratified Lie groups

论文作者

Suragan, Durvudkhan, Talwar, Bharat

论文摘要

我们证明,$ \ frac {q} {q-2} $是与均匀尺寸$ q $的任意分层的谎言组上半线性加热方程的富吉塔指数。这涵盖了欧几里得的案例,并对尼尔氏谎言群体的证明技术提供了新的见解。我们研究的方程式具有强迫术语,仅取决于组元素,并且具有积极的积分。分层的谎言组结构以及测试功能方法和Banach固定点定理在我们的证明中起着重要作用。

We prove that $\frac{Q}{Q-2}$ is the Fujita exponent for a semilinear heat equation on an arbitrary stratified Lie group with homogeneous dimension $Q$. This covers the Euclidean case and gives new insight into proof techniques on nilpotent Lie groups. The equation we study has a forcing term which depends only upon a group element and has positive integral. The stratified Lie group structure plays an important role in our proofs, along with test function method and Banach fixed point theorem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源