论文标题

DESNET:分解的比例一致网络,用于无监督的深度完成

DesNet: Decomposed Scale-Consistent Network for Unsupervised Depth Completion

论文作者

Yan, Zhiqiang, Wang, Kun, Li, Xiang, Zhang, Zhenyu, Li, Jun, Yang, Jian

论文摘要

无监督的深度完成旨在从稀疏的深度中恢复稀疏深度,而无需使用地面真相注释。尽管从LIDAR获得的深度测量通常稀疏,但它包含有效的和真实的距离信息,即比例符合的绝对深度值。同时,尺度不足的对应物寻求估计相对深度,并取得了令人印象深刻的性能。为了利用这两个固有的特征,我们建议在无监督的尺度范围内框架上建模量表一致的深度。具体而言,我们提出了分解的规模一致性学习(DSCL)策略,该策略将绝对深度分解为相对深度预测和全球规模估计,从而有助于个人学习益处。但是不幸的是,由于深度非常稀疏的深度输入和弱监督信号,大多数现有的无监督的尺度不足框架遭受了深度孔。为了解决这个问题,我们介绍了全球深度指南(GDG)模块,该模块的专注于通过新颖的密集到态度的注意,将密集的深度参考传播到稀疏的目标中。广泛的实验表明,我们方法在户外Kitti基准测试中的优越性,排名第一,优于最佳KBNET超过12%的RMSE。此外,我们的方法在室内NYUV2数据集上实现了最先进的性能。

Unsupervised depth completion aims to recover dense depth from the sparse one without using the ground-truth annotation. Although depth measurement obtained from LiDAR is usually sparse, it contains valid and real distance information, i.e., scale-consistent absolute depth values. Meanwhile, scale-agnostic counterparts seek to estimate relative depth and have achieved impressive performance. To leverage both the inherent characteristics, we thus suggest to model scale-consistent depth upon unsupervised scale-agnostic frameworks. Specifically, we propose the decomposed scale-consistent learning (DSCL) strategy, which disintegrates the absolute depth into relative depth prediction and global scale estimation, contributing to individual learning benefits. But unfortunately, most existing unsupervised scale-agnostic frameworks heavily suffer from depth holes due to the extremely sparse depth input and weak supervised signal. To tackle this issue, we introduce the global depth guidance (GDG) module, which attentively propagates dense depth reference into the sparse target via novel dense-to-sparse attention. Extensive experiments show the superiority of our method on outdoor KITTI benchmark, ranking 1st and outperforming the best KBNet more than 12% in RMSE. In addition, our approach achieves state-of-the-art performance on indoor NYUv2 dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源