论文标题
使用深层增强学习来揭示强大的石油和天然气公司宏观战略
Revealing Robust Oil and Gas Company Macro-Strategies using Deep Multi-Agent Reinforcement Learning
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The energy transition potentially poses an existential risk for major international oil companies (IOCs) if they fail to adapt to low-carbon business models. Projections of energy futures, however, are met with diverging assumptions on its scale and pace, causing disagreement among IOC decision-makers and their stakeholders over what the business model of an incumbent fossil fuel company should be. In this work, we used deep multi-agent reinforcement learning to solve an energy systems wargame wherein players simulate IOC decision-making, including hydrocarbon and low-carbon investments decisions, dividend policies, and capital structure measures, through an uncertain energy transition to explore critical and non-linear governance questions, from leveraged transitions to reserve replacements. Adversarial play facilitated by state-of-the-art algorithms revealed decision-making strategies robust to energy transition uncertainty and against multiple IOCs. In all games, robust strategies emerged in the form of low-carbon business models as a result of early transition-oriented movement. IOCs adopting such strategies outperformed business-as-usual and delayed transition strategies regardless of hydrocarbon demand projections. In addition to maximizing value, these strategies benefit greater society by contributing substantial amounts of capital necessary to accelerate the global low-carbon energy transition. Our findings point towards the need for lenders and investors to effectively mobilize transition-oriented finance and engage with IOCs to ensure responsible reallocation of capital towards low-carbon business models that would enable the emergence of fossil fuel incumbents as future low-carbon leaders.