论文标题

在净能量计量下的合作消耗和电动汽车充电

Co-optimizing Consumption and EV Charging under Net Energy Metering

论文作者

Jeon, Minjae, Tong, Lang, Zhao, Qing

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We consider the co-optimization of flexible household consumption, electric vehicle charging, and behind-the-meter distributed energy resources under the net energy metering tariff. Using a stochastic dynamic programming formulation, we show that the solution to the dynamic programming co-optimization is a procrastination threshold policy that delays and minimizes electricity purchasing for EV charging in each time interval. The policy thresholds can be computed off-line, simplifying the continuous action space dynamic optimization to decoupled closed-form charging and consumption decisions. Empirical studies using renewable, consumption, and EV data demonstrate the benefits of co-optimization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源