论文标题

从Dirichlet边界问题的范围中恢复量子树的形状

On recovering the shape of a quantum tree from the spectrum of the Dirichlet boundary problem

论文作者

Boyko, Olga, Martynyuk, Olga, Pivovarchik, Vyacheslav

论文摘要

频谱问题是由在吊坠顶点和连续性和内部顶点处的dirichlet边界条件的sturm-liouville方程式所产生的。事实证明,在较小或相等的8个顶点的等边树中没有共同光谱(即具有相同的这种问题范围)。呈现了9个顶点的所有共同谱系树。

Spectral problems are considered generated by the Sturm-Liouville equation on equilateral trees with the Dirichlet boundary conditions at the pendant vertices and continuity and Kirchhoff's conditions at the interior vertices. It is proved that there are no co-spectral (i.e., having the same spectrum of such problem) among equilateral trees of less or equal 8 vertices. All co-spectral trees of 9 vertices are presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源