论文标题
从最大混沌性到整合性的路线
A route from maximal chaoticity to integrability
论文作者
论文摘要
我们研究了Sachdev-Ye-Kitaev(Syk)模型的某些变体的混乱指数,即$ \ ns = 1 $ supersymmetry(SUSY)-syk及其同胞模型,即$(N | M)$ - SYK模型,这不是超级赞的,对于一般而言,对于自会上的相互作用强度而言,这不是SuperSymetric。我们发现,对于大$ q $,这些变体的混乱指数以及SYK和$ \ ns = 2 $ susy-syk型号均遵循单参数缩放定律。通过定量论点,我们进一步做出了一个猜想,即发现的比例定律可能适用于具有$ Q $的一般一维(1D)类似Syk的模型。这指出了从Maximal Chaos到SYK模型及其1D变体中完全常规或可整合运动的通用途径。
We study the chaos exponent of some variants of the Sachdev-Ye-Kitaev (SYK) model, namely, the $\Ns=1$ supersymmetry (SUSY)-SYK model and its sibling, the $(N|M)$-SYK model which is not supersymmetric in general, for arbitrary interaction strength. We find that for large $q$ the chaos exponent of these variants, as well as the SYK and the $\Ns=2$ SUSY-SYK model, all follow a single-parameter scaling law. By quantitative arguments we further make a conjecture, i.e. that the found scaling law might hold for general one-dimensional (1D) SYK-like models with large $q$. This points out a universal route from maximal chaos towards completely regular or integrable motion in the SYK model and its 1D variants.