论文标题

实践中的隐私:X射线图像中的私有互联-19检测(扩展版)

Privacy in Practice: Private COVID-19 Detection in X-Ray Images (Extended Version)

论文作者

Lange, Lucas, Schneider, Maja, Christen, Peter, Rahm, Erhard

论文摘要

机器学习(ML)可以通过快速筛选大量图像来帮助与Covid-19这样的大流行技术。为了在保持患者隐私的同时进行数据分析,我们创建了满足差异隐私(DP)的ML模型。探索私人Covid-19模型的先前工作部分基于小型数据集,提供较弱或不清楚的隐私保证,并且不研究实际的隐私。我们建议进行改进以解决这些开放差距。我们考虑固有的阶级失衡,并更广泛地评估公用事业私人关系权衡,超越隐私预算。通过Black-Box成员推理攻击(MIAS)从经验上估算实际隐私,我们的评估得到了支持。引入的DP应有助于限制MIA构成的泄漏威胁,而我们的实践分析是第一个在COVID-19分类任务上检验这一假设的方法。我们的结果表明,基于MIAS的任务依赖性实际威胁,所需的隐私级别可能会有所不同。结果进一步表明,随着DP保证的增加,经验隐私泄漏只会略有改善,因此DP似乎对实际MIA防御的影响有限。我们的发现确定了更好的公用事业权威权衡取舍的可能性,我们认为,经验攻击特定的隐私估计可以在调整实际隐私方面起着至关重要的作用。

Machine learning (ML) can help fight pandemics like COVID-19 by enabling rapid screening of large volumes of images. To perform data analysis while maintaining patient privacy, we create ML models that satisfy Differential Privacy (DP). Previous works exploring private COVID-19 models are in part based on small datasets, provide weaker or unclear privacy guarantees, and do not investigate practical privacy. We suggest improvements to address these open gaps. We account for inherent class imbalances and evaluate the utility-privacy trade-off more extensively and over stricter privacy budgets. Our evaluation is supported by empirically estimating practical privacy through black-box Membership Inference Attacks (MIAs). The introduced DP should help limit leakage threats posed by MIAs, and our practical analysis is the first to test this hypothesis on the COVID-19 classification task. Our results indicate that needed privacy levels might differ based on the task-dependent practical threat from MIAs. The results further suggest that with increasing DP guarantees, empirical privacy leakage only improves marginally, and DP therefore appears to have a limited impact on practical MIA defense. Our findings identify possibilities for better utility-privacy trade-offs, and we believe that empirical attack-specific privacy estimation can play a vital role in tuning for practical privacy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源