论文标题

背景混合的扩展用于弱监督的变更检测

Background-Mixed Augmentation for Weakly Supervised Change Detection

论文作者

Huang, Rui, Wang, Ruofei, Guo, Qing, Wei, Jieda, Zhang, Yuxiang, Fan, Wei, Liu, Yang

论文摘要

更改检测(CD)是要从背景变化(即环境变化)(例如光和季节变化)中解释对象变化(即对象缺失或出现),例如在长时间内在同一场景中捕获的两个图像中的光和季节变化,在灾难管理,城市发展,城市发展等中呈现关键应用。尤其是背景变化,需要检测到具有较高的环境,使其具有较高的环境变化。最近基于深度学习的方法通过配对训练示例开发了新颖的网络体系结构或优化策略,这些示例无法明确处理概括问题,需要大量的手动像素级注释工作。在这项工作中,对于CD社区的首次尝试,我们从数据增强的角度研究了CD的概括问题,并开发了一种仅需要图像级标签的新型弱监督培训算法。与一般分类技术不同,我们提出了背景混合的增强,该扩展是通过在一组改变背景的图像的指导下增强示例来设计用于变更检测的,并让深CD模型看到不同的环境变化。此外,我们提出了增强和实际数据一致性损失,鼓励概括大大增加。我们作为一般框架的方法可以增强广泛的现有基于深度学习的检测器。我们在两个公共数据集中进行了广泛的实验,并增强了四种最先进的方法,证明了我们方法的优势。我们在https://github.com/tsingqguo/bgmix上发布代码。

Change detection (CD) is to decouple object changes (i.e., object missing or appearing) from background changes (i.e., environment variations) like light and season variations in two images captured in the same scene over a long time span, presenting critical applications in disaster management, urban development, etc. In particular, the endless patterns of background changes require detectors to have a high generalization against unseen environment variations, making this task significantly challenging. Recent deep learning-based methods develop novel network architectures or optimization strategies with paired-training examples, which do not handle the generalization issue explicitly and require huge manual pixel-level annotation efforts. In this work, for the first attempt in the CD community, we study the generalization issue of CD from the perspective of data augmentation and develop a novel weakly supervised training algorithm that only needs image-level labels. Different from general augmentation techniques for classification, we propose the background-mixed augmentation that is specifically designed for change detection by augmenting examples under the guidance of a set of background-changing images and letting deep CD models see diverse environment variations. Moreover, we propose the augmented & real data consistency loss that encourages the generalization increase significantly. Our method as a general framework can enhance a wide range of existing deep learning-based detectors. We conduct extensive experiments in two public datasets and enhance four state-of-the-art methods, demonstrating the advantages of our method. We release the code at https://github.com/tsingqguo/bgmix.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源