论文标题

视觉灵活性:新颖和复杂物体形状的手机重新定位

Visual Dexterity: In-Hand Reorientation of Novel and Complex Object Shapes

论文作者

Chen, Tao, Tippur, Megha, Wu, Siyang, Kumar, Vikash, Adelson, Edward, Agrawal, Pulkit

论文摘要

内在对象的重新定向对于执行许多灵巧的操纵任务是必要的,例如在较小的结构化环境中使用的工具使用,这些环境仍然超出了当前机器人的范围。先前的工作构建了重新定向系统,假设一个或许多以下几个:仅重新定位具有简单形状的特定对象,有限的重新定位范围,缓慢或过准的操作,仅模拟结果,对专业和昂贵的传感器套件的需求以及其他限制因素以及其他限制因素,这使得对现实世界中的系统可能会出现系统。我们提出了一个一般的对象重新定向控制器,该控制器不会做出这些假设。它使用从单个商品深度摄像机进行的读数来实时进行任何旋转,以动态重新定向复合物和新对象形状,中间的重新定位时间接近七秒钟。该控制器是在模拟中使用强化学习训练的,并在现实世界中对未用于训练的新物体形状进行了评估,包括通过在重新定位期间必须抵消重力来抵消重力的最具挑战性的重新定位对象的情况。我们的硬件平台仅使用少于五千美元的开源组件。尽管我们证明了在先前工作中克服假设的能力,但仍有足够的范围来提高绝对性能。例如,在56%的试验中,未用于训练的具有挑战性的鸭形物体被删除。当它没有掉落时,我们的控制器将物体重新定向了0.4个弧度(23度)的时间75%。视频可在以下网址提供:https://taochenshh.github.io/projects/visual-dexterity。

In-hand object reorientation is necessary for performing many dexterous manipulation tasks, such as tool use in less structured environments that remain beyond the reach of current robots. Prior works built reorientation systems assuming one or many of the following: reorienting only specific objects with simple shapes, limited range of reorientation, slow or quasistatic manipulation, simulation-only results, the need for specialized and costly sensor suites, and other constraints which make the system infeasible for real-world deployment. We present a general object reorientation controller that does not make these assumptions. It uses readings from a single commodity depth camera to dynamically reorient complex and new object shapes by any rotation in real-time, with the median reorientation time being close to seven seconds. The controller is trained using reinforcement learning in simulation and evaluated in the real world on new object shapes not used for training, including the most challenging scenario of reorienting objects held in the air by a downward-facing hand that must counteract gravity during reorientation. Our hardware platform only uses open-source components that cost less than five thousand dollars. Although we demonstrate the ability to overcome assumptions in prior work, there is ample scope for improving absolute performance. For instance, the challenging duck-shaped object not used for training was dropped in 56 percent of the trials. When it was not dropped, our controller reoriented the object within 0.4 radians (23 degrees) 75 percent of the time. Videos are available at: https://taochenshh.github.io/projects/visual-dexterity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源