论文标题
RHCO:一个关系感知的异质图神经网络,具有对比度学习的大规模图形
RHCO: A Relation-aware Heterogeneous Graph Neural Network with Contrastive Learning for Large-scale Graphs
论文作者
论文摘要
异质图神经网络(HGNN)已被广泛应用于异质信息网络任务,而当将它们应用于大规模异质图时,大多数HGNN的可扩展性或弱表示。为了解决这些问题,我们提出了一种新型的关系性异质图神经网络,具有对比度学习(RHCO),用于大规模的异质图表示学习。与传统的异质图神经网络不同,我们采用对比度学习机制来处理大规模异构图的复杂异质性。我们首先学习网络模式视图下的关系感知节点嵌入。然后,我们提出了一种新型的阳性样品选择策略,以选择有意义的阳性样品。在学习正面样本图视图下学习节点嵌入后,我们执行跨视图对比度学习以获得最终的节点表示。此外,我们采用标签平滑技术来提高RHCO的性能。在三个大规模学术异质图数据集上进行了广泛的实验表明,RHCO在最新模型上取得了最佳性能。
Heterogeneous graph neural networks (HGNNs) have been widely applied in heterogeneous information network tasks, while most HGNNs suffer from poor scalability or weak representation when they are applied to large-scale heterogeneous graphs. To address these problems, we propose a novel Relation-aware Heterogeneous Graph Neural Network with Contrastive Learning (RHCO) for large-scale heterogeneous graph representation learning. Unlike traditional heterogeneous graph neural networks, we adopt the contrastive learning mechanism to deal with the complex heterogeneity of large-scale heterogeneous graphs. We first learn relation-aware node embeddings under the network schema view. Then we propose a novel positive sample selection strategy to choose meaningful positive samples. After learning node embeddings under the positive sample graph view, we perform a cross-view contrastive learning to obtain the final node representations. Moreover, we adopt the label smoothing technique to boost the performance of RHCO. Extensive experiments on three large-scale academic heterogeneous graph datasets show that RHCO achieves best performance over the state-of-the-art models.