论文标题
与量子卷积神经网络对物质量子阶段无关的学习
Model-Independent Learning of Quantum Phases of Matter with Quantum Convolutional Neural Networks
论文作者
论文摘要
已引入量子卷积神经网络(QCNN)作为物质量子阶段的分类器。在这里,我们为训练QCNNS提出了一个独立于模型的协议,以发现在相位保护下扰动下不变的订单参数。我们使用量子相的固定点波函数启动训练序列,然后添加转换不变的噪声,以尊重系统的对称性,以在短长度尺度上掩盖固定点结构。我们通过在一个维度上受到时间反转对称性保护的相位训练QCNN来说明这种方法,并在表现出微不足道,破坏对称性和对称性保护拓扑的几个时间反转对称模型上对其进行测试。 QCNN发现一组阶参数,该参数识别所有三个阶段,并准确预测相边界的位置。提出的协议为在可编程量子处理器上对量子相分类器进行硬件有效培训的道路铺平了道路。
Quantum convolutional neural networks (QCNNs) have been introduced as classifiers for gapped quantum phases of matter. Here, we propose a model-independent protocol for training QCNNs to discover order parameters that are unchanged under phase-preserving perturbations. We initiate the training sequence with the fixed-point wavefunctions of the quantum phase and then add translation-invariant noise that respects the symmetries of the system to mask the fixed-point structure on short length scales. We illustrate this approach by training the QCNN on phases protected by time-reversal symmetry in one dimension, and test it on several time-reversal symmetric models exhibiting trivial, symmetry-breaking, and symmetry-protected topological order. The QCNN discovers a set of order parameters that identifies all three phases and accurately predicts the location of the phase boundary. The proposed protocol paves the way towards hardware-efficient training of quantum phase classifiers on a programmable quantum processor.