论文标题
通过可变形点采样来检测边界意识的对象检测
Boundary-aware Camouflaged Object Detection via Deformable Point Sampling
论文作者
论文摘要
伪装的对象检测(COD)任务旨在识别和细分由于其相似的颜色或纹理而融合到背景中的对象。尽管这项任务固有的困难,但COD在几个领域(例如医学,挽救生命和反军事领域)引起了很大的关注。在本文中,我们提出了一种称为可变形点采样网络(DPS-NET)的新颖解决方案,以应对与COD相关的挑战。提出的DPS-NET使用可变形点采样变压器(DPS变压器),该变压器可以使用可变形点采样方法有效地捕获COD中重要对象边界的稀疏局部边界信息。此外,DPS变压器通过通过将对象的粗糙全局位置信息与边界本地信息集成到目标对象定位的上下文特征来展示鲁棒的COD性能。我们在三个突出的数据集上评估我们的方法,并实现最先进的性能。我们的结果证明了通过比较实验提出的方法的有效性。
The camouflaged object detection (COD) task aims to identify and segment objects that blend into the background due to their similar color or texture. Despite the inherent difficulties of the task, COD has gained considerable attention in several fields, such as medicine, life-saving, and anti-military fields. In this paper, we propose a novel solution called the Deformable Point Sampling network (DPS-Net) to address the challenges associated with COD. The proposed DPS-Net utilizes a Deformable Point Sampling transformer (DPS transformer) that can effectively capture sparse local boundary information of significant object boundaries in COD using a deformable point sampling method. Moreover, the DPS transformer demonstrates robust COD performance by extracting contextual features for target object localization through integrating rough global positional information of objects with boundary local information. We evaluate our method on three prominent datasets and achieve state-of-the-art performance. Our results demonstrate the effectiveness of the proposed method through comparative experiments.