论文标题
CDDSA:可推广的医学图像分割的对比域拆卸和样式增强
CDDSA: Contrastive Domain Disentanglement and Style Augmentation for Generalizable Medical Image Segmentation
论文作者
论文摘要
对具有潜在域移位和不同样式的以前看不见的图像的概括对于临床上适用的医疗图像分割至关重要,并且解散域特异性和域不变特征的能力是实现域概括(DG)的关键。但是,现有的DG方法几乎无法实现有效的分解以获得高概括性。为了解决这个问题,我们提出了一个有效的对比域拆卸和样式增强(CDDSA)框架,以进行通用医学图像细分。首先,提出了一个删除网络将图像分解为域不变的解剖学表示和特定领域的样式代码,其中前者被发送到不受域移位影响的分割模型,并且DISENTANGLE网络由将解剖和样式编码融合为重新组件的解码器正规化,以重新组件图像。其次,为了获得更好的解开,提出了对比损失,以鼓励来自同一领域和不同领域的样式代码,分别是紧凑和发散的。第三,为了进一步提高普遍性,我们提出了一种基于分离表示的样式增强方法,以通过具有共同的解剖结构的各种看不见的样式合成图像。我们的方法在用于光学杯和圆盘分割的公共多站点底面图像数据集上得到了验证,以及用于鼻咽肿瘤肿瘤体积(GTVNX)分段的内部多站点鼻咽癌磁共振图像(NPC-MRI)数据集。实验结果表明,所提出的CDDSA在不同域中实现了显着的普遍性,并且在可域名分割中的几种最新方法优于其他最新方法。
Generalization to previously unseen images with potential domain shifts and different styles is essential for clinically applicable medical image segmentation, and the ability to disentangle domain-specific and domain-invariant features is key for achieving Domain Generalization (DG). However, existing DG methods can hardly achieve effective disentanglement to get high generalizability. To deal with this problem, we propose an efficient Contrastive Domain Disentanglement and Style Augmentation (CDDSA) framework for generalizable medical image segmentation. First, a disentangle network is proposed to decompose an image into a domain-invariant anatomical representation and a domain-specific style code, where the former is sent to a segmentation model that is not affected by the domain shift, and the disentangle network is regularized by a decoder that combines the anatomical and style codes to reconstruct the input image. Second, to achieve better disentanglement, a contrastive loss is proposed to encourage the style codes from the same domain and different domains to be compact and divergent, respectively. Thirdly, to further improve generalizability, we propose a style augmentation method based on the disentanglement representation to synthesize images in various unseen styles with shared anatomical structures. Our method was validated on a public multi-site fundus image dataset for optic cup and disc segmentation and an in-house multi-site Nasopharyngeal Carcinoma Magnetic Resonance Image (NPC-MRI) dataset for nasopharynx Gross Tumor Volume (GTVnx) segmentation. Experimental results showed that the proposed CDDSA achieved remarkable generalizability across different domains, and it outperformed several state-of-the-art methods in domain-generalizable segmentation.