论文标题

Burer-Monteiro SDP方法甚至可能在Barvinok-Pataki绑定的上方失败

The Burer-Monteiro SDP method can fail even above the Barvinok-Pataki bound

论文作者

O'Carroll, Liam, Srinivas, Vaidehi, Vijayaraghavan, Aravindan

论文摘要

在实践中,最广泛使用的用于求解大规模半决赛程序(SDP)的技术是非凸burer-monteiro方法,该方法明确维护低级SDP解决方案以提高记忆效率。最近有很多兴趣对Burer-Monteiro方法获得更好的理论理解。当SDP解决方案的最大允许等级$ p $在Barvinok-Pataki Bound上(保证全球最佳排名解决方案保证存在)时,最近建立的工作线融合到了全球最佳选择,以实现该问题的通用或平滑实例。但是,在这个制度中是否存在实例,burer-monteiro方法失败了,这是开放的。我们证明,当等级高于Barvinok-Pataki Bound($ p \ ge \ sqrt {2n} $)时,$ n $ VERTICES上的最大切割SDP可能会失败。即使等级$ p = n/2 $,我们也提供了一个具有伪造本地最小值的实例。结合现有的保证,这解决了在所有等级的所有范围内的最大切割公式存在的杂种局部最小值的问题,并证明使用了超出最糟糕的范式(如平滑分析),以获得Burer-Monteiro方法的保证。

The most widely used technique for solving large-scale semidefinite programs (SDPs) in practice is the non-convex Burer-Monteiro method, which explicitly maintains a low-rank SDP solution for memory efficiency. There has been much recent interest in obtaining a better theoretical understanding of the Burer-Monteiro method. When the maximum allowed rank $p$ of the SDP solution is above the Barvinok-Pataki bound (where a globally optimal solution of rank at most $p$ is guaranteed to exist), a recent line of work established convergence to a global optimum for generic or smoothed instances of the problem. However, it was open whether there even exists an instance in this regime where the Burer-Monteiro method fails. We prove that the Burer-Monteiro method can fail for the Max-Cut SDP on $n$ vertices when the rank is above the Barvinok-Pataki bound ($p \ge \sqrt{2n}$). We provide a family of instances that have spurious local minima even when the rank $p = n/2$. Combined with existing guarantees, this settles the question of the existence of spurious local minima for the Max-Cut formulation in all ranges of the rank and justifies the use of beyond worst-case paradigms like smoothed analysis to obtain guarantees for the Burer-Monteiro method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源