论文标题
Spectrahedra体积的确定性近似算法
Deterministic Approximation Algorithms for Volumes of Spectrahedra
论文作者
论文摘要
我们基于统计物理学的最大透镜原理,提供了一种计算渐近公式的方法和谱图体积的近似方法。该方法基于单个凸优化的问题提供了近似的体积公式,该问题将$ - \ log \ det p $在频谱上最小化。 Spectrahedra可以描述为阳性半明确(PSD)矩阵的凸锥的仿射切片,并且只要仿射约束的数量足够由PSD锥体的尺寸统治,该方法就会产生有效的确定性近似算法和渐近公式。 我们的方法的灵感来自Barvinok和Hartigan的工作,他们使用类似框架来大致计算多面体的体积。但是,Spectrahedra具有多面有的非凡特征,这是一个新事实,我们还证明了:一组密度矩阵的中央部分(单纯形的量子版本)的中央部分均无渐进的体积。这允许使用非常通用的近似算法,这些算法适用于大型天然谱图。 我们给出了此方法的两个主要应用。首先,我们将此方法应用于所谓的“多路Birkhoff Spectrahedron”,并为其体积获得明确的渐近公式。该频谱是具有最大纠缠的量子状态集(即,具有单变量量子边缘的量子状态等于身份矩阵),并且是多路Birkhoff多层的量子类似物。其次,我们将此方法应用于一组密度矩阵的中央部分的渐近体积。
We give a method for computing asymptotic formulas and approximations for the volumes of spectrahedra, based on the maximum-entropy principle from statistical physics. The method gives an approximate volume formula based on a single convex optimization problem of minimizing $-\log \det P$ over the spectrahedron. Spectrahedra can be described as affine slices of the convex cone of positive semi-definite (PSD) matrices, and the method yields efficient deterministic approximation algorithms and asymptotic formulas whenever the number of affine constraints is sufficiently dominated by the dimension of the PSD cone. Our approach is inspired by the work of Barvinok and Hartigan who used an analogous framework for approximately computing volumes of polytopes. Spectrahedra, however, possess a remarkable feature not shared by polytopes, a new fact that we also prove: central sections of the set of density matrices (the quantum version of the simplex) all have asymptotically the same volume. This allows for very general approximation algorithms, which apply to large classes of naturally occurring spectrahedra. We give two main applications of this method. First, we apply this method to what we call the "multi-way Birkhoff spectrahedron" and obtain an explicit asymptotic formula for its volume. This spectrahedron is the set of quantum states with maximal entanglement (i.e., the quantum states having univariant quantum marginals equal to the identity matrix) and is the quantum analog of the multi-way Birkhoff polytope. Second, we apply this method to explicitly compute the asymptotic volume of central sections of the set of density matrices.