论文标题
FRE:一种用于异常检测和分割的快速方法
FRE: A Fast Method For Anomaly Detection And Segmentation
论文作者
论文摘要
本文提出了一种解决视觉异常检测和分割问题的快速和原则性方法。在此设置中,我们只能访问无异常的培训数据,并希望在测试数据上检测和确定任意性质的异常。我们建议将线性统计维度降低技术应用于训练数据中预审计的DNN产生的中间特征,以捕获真正由上述特征跨越的低维子空间。我们表明,\ emph {特征重建错误}(fre)是$ \ ell_2 $ - 高维空间中原始特征与其低维降低嵌入的预图像之间的差异之间的差异非常有效。此外,使用在中间卷积层上使用相同的特征重建误差概念,我们得出了图像中异常的像素级空间定位(即分割)。使用标准异常检测数据集和DNN体系结构的实验表明,我们的方法匹配或超过一流的质量性能,但在最新情况下所需的计算和内存成本的一小部分。即使在传统的CPU上,它也可以非常有效地训练和运行。
This paper presents a fast and principled approach for solving the visual anomaly detection and segmentation problem. In this setup, we have access to only anomaly-free training data and want to detect and identify anomalies of an arbitrary nature on test data. We propose the application of linear statistical dimensionality reduction techniques on the intermediate features produced by a pretrained DNN on the training data, in order to capture the low-dimensional subspace truly spanned by said features. We show that the \emph{feature reconstruction error} (FRE), which is the $\ell_2$-norm of the difference between the original feature in the high-dimensional space and the pre-image of its low-dimensional reduced embedding, is extremely effective for anomaly detection. Further, using the same feature reconstruction error concept on intermediate convolutional layers, we derive FRE maps that provide pixel-level spatial localization of the anomalies in the image (i.e. segmentation). Experiments using standard anomaly detection datasets and DNN architectures demonstrate that our method matches or exceeds best-in-class quality performance, but at a fraction of the computational and memory cost required by the state of the art. It can be trained and run very efficiently, even on a traditional CPU.