论文标题

垂直联合学习:概念,进步和挑战

Vertical Federated Learning: Concepts, Advances and Challenges

论文作者

Liu, Yang, Kang, Yan, Zou, Tianyuan, Pu, Yanhong, He, Yuanqin, Ye, Xiaozhou, Ouyang, Ye, Zhang, Ya-Qin, Yang, Qiang

论文摘要

垂直联合学习(VFL)是一个联合学习设置,其中有多个特征的各方大约相同的用户共同训练机器学习模型,而无需公开其原始数据或模型参数。由VFL研究和现实世界应用的快速增长的激励,我们对VFL的概念和算法进行了全面的综述,以及各个方面的当前进步和挑战,包括有效性,效率和隐私。我们为VFL设置和保护隐私协议提供了详尽的分类,并全面分析了每个协议的隐私攻击和辩护策略。最后,我们提出了一个称为Vflow的统一框架,该框架在通信,计算,隐私以及有效性和公平性约束下考虑了VFL问题。最后,我们回顾了工业应用方面的最新进展,强调了VFL的开放挑战和未来的方向。

Vertical Federated Learning (VFL) is a federated learning setting where multiple parties with different features about the same set of users jointly train machine learning models without exposing their raw data or model parameters. Motivated by the rapid growth in VFL research and real-world applications, we provide a comprehensive review of the concept and algorithms of VFL, as well as current advances and challenges in various aspects, including effectiveness, efficiency, and privacy. We provide an exhaustive categorization for VFL settings and privacy-preserving protocols and comprehensively analyze the privacy attacks and defense strategies for each protocol. In the end, we propose a unified framework, termed VFLow, which considers the VFL problem under communication, computation, privacy, as well as effectiveness and fairness constraints. Finally, we review the most recent advances in industrial applications, highlighting open challenges and future directions for VFL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源