论文标题

发光的纳米颗粒在缩小的球形腔中 - 探测胶体悬浮液的蒸发微颗粒 - 光学晶格和结构过渡

Luminescent nanoparticles in a shrinking spherical cavity -- probing the evaporating microdroplets of colloidal suspension -- optical lattices and structural transitions

论文作者

Shopa, Yaroslav, Kolwas, Maciej, Kamińska, Izabela, Derkachov, Gennadiy, Nyandey, Kwasi, Jakubczyk, Tomasz, Wojciechowski, Tomasz, Derkachova, Anastasiya, Jakubczyk, Daniel

论文摘要

我们研究了使用带电发光的纳米颗粒作为纳米探针的可能性,以研究表面的演化情景和悬浮液的缓慢蒸发自由(轻度吸收)微螺旋体的内部结构。使用了三个浓度(1、10和50 mg/ml)的发光纳米颗粒。将单个微孔保持在线性电动力四极陷阱中,并用辐照度约为50 W/mm2的CW IR激光激发发光。由于微孔充当光学球形共振腔,因此纳米颗粒与光的相互作用均反映和修改了内部光场模式结构。根据所使用的纳米颗粒浓度,它使得纳米颗粒的浓度非常明显地增加了调节深度和球形腔共鸣最大值的狭窄(形态依赖性共振 - MDR -MDR)在发光和散射中观察到的,散射和散射和散射和生物稳定性之间的比率的突然变化。观察到的现象可以归因于光学MDR与纳米颗粒晶格壳的相互作用,并在微核表面形成结构。这样,可以检测到此类格子的形成和崩溃。

We investigated the possibility of using charged luminescent nanoparticles as nanoprobes for studying the evolution scenarios of surface and internal structure of slowly evaporating free (light-absorbing) microdroplets of suspension. Three concentrations (1, 10 and 50 mg/ml) of luminescent nanoparticles were used. Single microdroplets were kept in a linear electrodynamic quadrupole trap and the luminescence was excited with a CW IR laser with an irradiance of ~50 W/mm2. Since the microdroplet acted as an optical spherical resonance cavity, the interaction of nanoparticles with light both reflected and modified the internal light field mode structure. Depending on the nanoparticle concentration used, it led, among others, to a very significant increase in modulation depth and narrowing of spherical cavity resonance maxima (morphology dependent resonances - MDRs) observed both in luminescence and scattering, the abrupt changes in the ratio between the luminescence and the scattering and the bi-stability in luminescence signal. The observed phenomena could be attributed to the interaction of optical MDRs with nanoparticle lattice shells forming and changing their structure at the microdroplet surface. In this way, the formation and collapse of such lattices could be detected.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源