论文标题

二进制和计数网络数据的潜在收缩位置模型

A Latent Shrinkage Position Model for Binary and Count Network Data

论文作者

Gwee, Xian Yao, Gormley, Isobel Claire, Fop, Michael

论文摘要

参与者之间的相互作用经常使用网络表示。潜在位置模型被广泛用于分析网络数据,每个演员都位于潜在空间中。推断这个空间的维度很具有挑战性。通常,为简单起见,使用二维或使用模型选择标准来选择维度,但这需要选择标准和拟合多个模型的计算费用。在这里,提出了潜在的收缩位置模型(LSPM),该模型本质上会渗透潜在空间的有效维度。 LSPM采用了贝叶斯非参数截短的伽马过程,以确保跨更高维度的潜在位置的方差缩小。具有不可差异方差的维度对于描述观察到的网络最有用,从而诱导了对潜在空间维度的自动推断。虽然LSPM适用于许多网络类型,但在这里为二进制和计数网络开发了Logistic和Poisson LSPM。推理通过马尔可夫链蒙特卡洛算法进行,其中新颖的代理提案分布减轻了计算负担。 LSPM的属性是通过仿真研究评估的,并通过应用于实际网络数据集来说明其效用。开源软件有助于更广泛的LSPM实现。

Interactions between actors are frequently represented using a network. The latent position model is widely used for analysing network data, whereby each actor is positioned in a latent space. Inferring the dimension of this space is challenging. Often, for simplicity, two dimensions are used or model selection criteria are employed to select the dimension, but this requires choosing a criterion and the computational expense of fitting multiple models. Here the latent shrinkage position model (LSPM) is proposed which intrinsically infers the effective dimension of the latent space. The LSPM employs a Bayesian nonparametric multiplicative truncated gamma process prior that ensures shrinkage of the variance of the latent positions across higher dimensions. Dimensions with non-negligible variance are deemed most useful to describe the observed network, inducing automatic inference on the latent space dimension. While the LSPM is applicable to many network types, logistic and Poisson LSPMs are developed here for binary and count networks respectively. Inference proceeds via a Markov chain Monte Carlo algorithm, where novel surrogate proposal distributions reduce the computational burden. The LSPM's properties are assessed through simulation studies, and its utility is illustrated through application to real network datasets. Open source software assists wider implementation of the LSPM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源