论文标题

纯粹虚构的图表上的注释

A note on graphs with purely imaginary per-spectrum

论文作者

Singh, Ranveer, Wankhede, Hitesh

论文摘要

1983年,Borowiecki和Jófwiak提出了这个问题``描述了那些纯粹是每张光谱的图表。''这个问题仍然很开放。 Yan和Zhang在2004年给出了最一般的结果,尽管是部分解决方案,他们表明,如果$ g $是一张两分的图,没有任何子图,这是$ k_ {2,3} $的均匀细分,那么它纯粹是纯粹的每光谱。张和李在2012年证明了这样的图形是平面,并且承认了Pfaffian取向。在本文中,我们描述了如何使用根图的合并使用$ k_ {2,3} $(平面和非平面)的纯粹的每个光谱构建图形。

In 1983, Borowiecki and Jóźwiak posed the problem ``Characterize those graphs which have purely imaginary per-spectrum.'' This problem is still open. The most general result, although a partial solution, was given in 2004 by Yan and Zhang, who show that if $G$ is a bipartite graph containing no subgraph which is an even subdivision of $K_{2,3}$, then it has purely imaginary per-spectrum. Zhang and Li in 2012 proved that such graphs are planar and admit a Pfaffian orientation. In this article, we describe how to construct graphs with purely imaginary per-spectrum having a subgraph which is an even subdivision of $K_{2,3}$ (planar and nonplanar) using coalescence of rooted graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源