论文标题

线性椭圆问题的异步全局非侵入性耦合

Asynchronous global-local non-invasive coupling for linear elliptic problems

论文作者

Kerim, Ahmed El, Gosselet, Pierre, Magoulès, Frédéric

论文摘要

本文介绍了全球/局部非侵入耦合的第一个异步版本,能够有效处理多个,可能相邻的补丁。我们从原始领域的分解方法中对耦合进行了新的解释,并证明了放松的异步迭代的收敛性。异步范式提高了全球/本地耦合性能的许多瓶颈。我们说明了热和弹性研究中遇到的几个线性椭圆问题的方法。

This paper presents the first asynchronous version of the Global/Local non-invasive coupling, capable of dealing efficiently with multiple, possibly adjacent, patches. We give a new interpretation of the coupling in terms of primal domain decomposition method, and we prove the convergence of the relaxed asynchronous iteration. The asynchronous paradigm lifts many bottlenecks of the Global/Local coupling performance. We illustrate the method on several linear elliptic problems as encountered in thermal and elasticity studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源