论文标题

对种群综合的深度学习模型的鲁棒性分析

Robustness Analysis of Deep Learning Models for Population Synthesis

论文作者

Mensah, Daniel Opoku, Badu-Marfo, Godwin, Farooq, Bilal

论文摘要

深层生成模型已对合成数据生成,尤其是种群综合有用。这些模型隐含地了解数据集的概率分布,并可以从分布中绘制样本。已经提出了几种模型,但是它们的性能仅在单个横截面样本上进行测试。在单个数据集上的人群合成的实施被视为一个缺点,需要进一步的研究来探索多个数据集上模型的鲁棒性。在与实际数据相比可以提高模型的信任和解释性的同时,评估深层生成模型的稳健性的技术尚未得到充实。在这项研究中,我们为深层生成模型提供了引导性置信区间,该方法可以计算有效的置信区间的平均误差预测,以评估模型对多个数据集的鲁棒性。具体而言,我们采用基于表格的复合旅行生成对抗网络(CTGAN)和变异自动编码器(VAE)来估计种群的分布,通过生成在同一研究区域中使用多个样品的副本数据的剂来生成具有表格数据的剂。这些模型是根据蒙特利尔起源的多个旅行日记实施的 - 2008年,2013年和2018年,并比较了来自多个调查的不同样本量的预测性能。结果表明,与VAE相比,CTGAN的预测错误具有较窄的置信区间,表明其对不同样本大小的多个数据集的稳健性。同样,对不同样本量变化的模型鲁棒性的评估显示,模型性能的下降最少,样本量减少。这项研究直接通过在可靠的环境中实现良好的合成生成人群来直接支持基于代理的建模。

Deep generative models have become useful for synthetic data generation, particularly population synthesis. The models implicitly learn the probability distribution of a dataset and can draw samples from a distribution. Several models have been proposed, but their performance is only tested on a single cross-sectional sample. The implementation of population synthesis on single datasets is seen as a drawback that needs further studies to explore the robustness of the models on multiple datasets. While comparing with the real data can increase trust and interpretability of the models, techniques to evaluate deep generative models' robustness for population synthesis remain underexplored. In this study, we present bootstrap confidence interval for the deep generative models, an approach that computes efficient confidence intervals for mean errors predictions to evaluate the robustness of the models to multiple datasets. Specifically, we adopt the tabular-based Composite Travel Generative Adversarial Network (CTGAN) and Variational Autoencoder (VAE), to estimate the distribution of the population, by generating agents that have tabular data using several samples over time from the same study area. The models are implemented on multiple travel diaries of Montreal Origin- Destination Survey of 2008, 2013, and 2018 and compare the predictive performance under varying sample sizes from multiple surveys. Results show that the predictive errors of CTGAN have narrower confidence intervals indicating its robustness to multiple datasets of the varying sample sizes when compared to VAE. Again, the evaluation of model robustness against varying sample size shows a minimal decrease in model performance with decrease in sample size. This study directly supports agent-based modelling by enabling finer synthetic generation of populations in a reliable environment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源