论文标题

NQE:n- ary查询嵌入用于复杂查询的复杂查询,以通过超相关知识图来回答

NQE: N-ary Query Embedding for Complex Query Answering over Hyper-Relational Knowledge Graphs

论文作者

Luo, Haoran, E, Haihong, Yang, Yuhao, Zhou, Gengxian, Guo, Yikai, Yao, Tianyu, Tang, Zichen, Lin, Xueyuan, Wan, Kaiyang

论文摘要

复杂查询答案(CQA)是知识图(KGS)多跳和逻辑推理的重要任务。当前,大多数方法仅限于二元关系事实之间的疑问,并且更少注意包含两个以上实体的n- ary事实(n> = 2),这些实体在现实世界中更为普遍。此外,以前的CQA方法只能对一些给定类型的查询进行预测,并且不能灵活地扩展到更复杂的逻辑查询,这大大限制了其应用程序。为了克服这些挑战,在这项工作中,我们提出了一个新型的N- ARY查询嵌入(NQE)模型,用于在超级相关知识图(HKGS)上进行CQA,其中包括大量的N- Ary事实。 NQE利用双重异构变压器编码器和模糊逻辑理论来满足所有n-ary for查询,包括存在的量化词,连接,分离和否定。我们还提出了一种并行处理算法,该算法可以在单个批次中训练或预测任意的n-ary查询,而不管每种查询的种类,具有良好的灵活性和可扩展性。此外,我们生成了一个新的CQA数据集WD50K-NFOL,包括WD50K上的不同n-ary fol质量。 WD50K-NFOL和其他标准CQA数据集的实验结果表明,NQE是具有良好概括能力的HKG的最新CQA方法。我们的代码和数据集公开可用。

Complex query answering (CQA) is an essential task for multi-hop and logical reasoning on knowledge graphs (KGs). Currently, most approaches are limited to queries among binary relational facts and pay less attention to n-ary facts (n>=2) containing more than two entities, which are more prevalent in the real world. Moreover, previous CQA methods can only make predictions for a few given types of queries and cannot be flexibly extended to more complex logical queries, which significantly limits their applications. To overcome these challenges, in this work, we propose a novel N-ary Query Embedding (NQE) model for CQA over hyper-relational knowledge graphs (HKGs), which include massive n-ary facts. The NQE utilizes a dual-heterogeneous Transformer encoder and fuzzy logic theory to satisfy all n-ary FOL queries, including existential quantifiers, conjunction, disjunction, and negation. We also propose a parallel processing algorithm that can train or predict arbitrary n-ary FOL queries in a single batch, regardless of the kind of each query, with good flexibility and extensibility. In addition, we generate a new CQA dataset WD50K-NFOL, including diverse n-ary FOL queries over WD50K. Experimental results on WD50K-NFOL and other standard CQA datasets show that NQE is the state-of-the-art CQA method over HKGs with good generalization capability. Our code and dataset are publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源