论文标题
通过目标和上下文感知变压器有效的零射击视觉搜索
Efficient Zero-shot Visual Search via Target and Context-aware Transformer
论文作者
论文摘要
视觉搜索是自然视觉中无处不在的挑战,包括日常任务,例如在人群中找到朋友或在停车场寻找汽车。人类在很大程度上依靠相关目标功能来执行目标定向的视觉搜索。同时,上下文对于在复杂场景中定位目标对象至关重要,因为它有助于缩小搜索区域并提高搜索过程的效率。但是,在视觉搜索计算模型中,很少有作品将目标和上下文信息结合在一起。在这里,我们建议使用目标和上下文相关信息在视觉变压器中调节自我关注的自我注意力,以使类似人类的零击视觉搜索性能在视觉变压器中调节自我关注。目标调制被计算为目标与搜索图像之间的局部局部相关性,而上下文调制以全球方式应用。我们对三个自然场景数据集的TCT和其他竞争性视觉搜索模型进行了视觉搜索实验,难度级别不同。 TCT在搜索效率方面展示了类似人类的性能,并在挑战视觉搜索任务中击败了SOTA模型。重要的是,TCT在没有重新调整或微调的情况下,在整个数据集中都很好地概括了。此外,我们还向不一致的上下文中引入了一个新数据集,以进行基准模型,以进行不变的视觉搜索。 TCT设法通过目标和上下文调制灵活地搜索,即使在不一致的上下文中也是如此。
Visual search is a ubiquitous challenge in natural vision, including daily tasks such as finding a friend in a crowd or searching for a car in a parking lot. Human rely heavily on relevant target features to perform goal-directed visual search. Meanwhile, context is of critical importance for locating a target object in complex scenes as it helps narrow down the search area and makes the search process more efficient. However, few works have combined both target and context information in visual search computational models. Here we propose a zero-shot deep learning architecture, TCT (Target and Context-aware Transformer), that modulates self attention in the Vision Transformer with target and contextual relevant information to enable human-like zero-shot visual search performance. Target modulation is computed as patch-wise local relevance between the target and search images, whereas contextual modulation is applied in a global fashion. We conduct visual search experiments on TCT and other competitive visual search models on three natural scene datasets with varying levels of difficulty. TCT demonstrates human-like performance in terms of search efficiency and beats the SOTA models in challenging visual search tasks. Importantly, TCT generalizes well across datasets with novel objects without retraining or fine-tuning. Furthermore, we also introduce a new dataset to benchmark models for invariant visual search under incongruent contexts. TCT manages to search flexibly via target and context modulation, even under incongruent contexts.