论文标题

有条件扩散的微结构重建

Conditional diffusion-based microstructure reconstruction

论文作者

Düreth, Christian, Seibert, Paul, Rücker, Dennis, Handford, Stephanie, Kästner, Markus, Gude, Maik

论文摘要

微结构重建是逆计算材料工程的主要组成部分,目前以前所未有的速度前进。尽管开发了各种基于培训和无培训的方法,但大多数贡献都是基于生成的对抗网络。相比之下,扩散模型构成了一种更稳定的替代方案,该替代方法最近已成为新的最新状态,目前引起了很多关注。本工作研究了扩散模型对重建现实世界微观结构数据的适用性。为此,通过结合和处理文献数据库来创建高度多样化和形态上复杂的数据集,在该数据库中,对于给定材料类的逼真的显微照片重建表明了模型捕获这些功能的能力。此外,光纤复合数据集用于验证扩散模型对小型数据集大小的适用性,这些大小可以由单个实验室实际创建。重建的微观结构的质量和多样性是通过基于描述符的误差指标以及FRéchet成立距离(FID)得分来量化的。尽管在训练数据集中不存在,但与实际数据相对于未经训练的眼睛而言,生成的样品在视觉上是无法区分的,并且计算了各种误差指标。这证明了扩散模型在微观结构重建中的实用性,并为进一步的扩展提供了基础,例如2d到3D重建或应用于多尺度建模和结构 - 质量链接。

Microstructure reconstruction, a major component of inverse computational materials engineering, is currently advancing at an unprecedented rate. While various training-based and training-free approaches are developed, the majority of contributions are based on generative adversarial networks. In contrast, diffusion models constitute a more stable alternative, which have recently become the new state of the art and currently attract much attention. The present work investigates the applicability of diffusion models to the reconstruction of real-world microstructure data. For this purpose, a highly diverse and morphologically complex data set is created by combining and processing databases from the literature, where the reconstruction of realistic micrographs for a given material class demonstrates the ability of the model to capture these features. Furthermore, a fiber composite data set is used to validate the applicability of diffusion models to small data set sizes that can realistically be created by a single lab. The quality and diversity of the reconstructed microstructures is quantified by means of descriptor-based error metrics as well as the Fréchet inception distance (FID) score. Although not present in the training data set, the generated samples are visually indistinguishable from real data to the untrained eye and various error metrics are computed. This demonstrates the utility of diffusion models in microstructure reconstruction and provides a basis for further extensions such as 2D-to-3D reconstruction or application to multiscale modeling and structure-property linkages.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源