论文标题

纯四四触角重力理论的一阶双曲公式

First-order hyperbolic formulation of the pure tetrad teleparallel gravity theory

论文作者

Peshkov, Ilya, Olivares, Héctor, Romenski, Evgeniy

论文摘要

受爱因斯坦场方程的数值解决方案的需求驱动, 我们得出二阶$ f(t)$ -Teleparallel的一阶减少 纯四个公式中的重力方程(无自旋连接)。我们 然后将我们的注意力限制在相当于一般的电触电上 相对论(TEGR)并提出了这些方程的3+1分解 适用于计算实施。我们在真空中证明了这一点 (无物质时空)获得的一阶方程系统是 相当于Estabrook对一般相对性的四元重新制定, 鲁滨逊,瓦尔奎斯特,布赫曼和巴丁,因此也承认 对称双曲配方。但是, 到目前为止,任意空间的3+1 TEGR方程仍未得到解决。 此外,3+1方程的结构类似于很多 与相对论电动力学方程的相似性和 最近提出的DGREM四四元改革对一般相对论。

Driven by the need for numerical solutions to the Einstein field equations, we derive a first-order reduction of the second-order $ f(T) $-teleparallel gravity equations in the pure-tetrad formulation (no spin connection). We then restrict our attention to the teleparallel equivalent of general relativity (TEGR) and propose a 3+1 decomposition of these equations suitable for computational implementation. We demonstrate that in vacuum (matter-free spacetime) the obtained system of first-order equations is equivalent to the tetrad reformulation of general relativity by Estabrook, Robinson, Wahlquist, and Buchman and Bardeen, and therefore also admits a symmetric hyperbolic formulation. However, the question of hyperbolicity of the 3+1 TEGR equations for arbitrary spacetimes remains unaddressed so far. Furthermore, the structure of the 3+1 equations resembles a lot of similarities with the equations of relativistic electrodynamics and the recently proposed dGREM tetrad-reformulation of general relativity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源