论文标题
$(i,j^p)=(1,1/2^+)$ $σnn$ quasibound state
$(I,J^P)=(1,1/2^+)$ $ΣNN$ quasibound state
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
JLab has recently found indications of the possible existence of a $ΣNN$ resonance at $(3.14 \pm 0.84) - i (2.28 \pm 1.2)$ MeV. In the past, using models that exploit symmetries between the two-baryon sector with and without strangeness, hyperon-nucleon interactions have been derived that reproduce the experimental data of the strangeness $-1$ sector. We make use of these interactions to review existing Faddeev studies of the $ΛNN$-$ΣNN$ system that show theoretical evidences about a $(I,J^P)=(1,1/2^+)$ $ΣNN$ quasibound state near threshold. The calculated position of the pole is at 2.92$\,-i\,$2.17 MeV, in reasonable agreement with the experimental findings.