论文标题

Automata Cascades:表达和样本复杂性

Automata Cascades: Expressivity and Sample Complexity

论文作者

Ronca, Alessandro, Knorozova, Nadezda Alexandrovna, De Giacomo, Giuseppe

论文摘要

每个自动机都可以分解为基本质量自动机的级联。这是Krohn和Rhodes的主要分解定理。在这一理论的指导下,我们提出自动机层流为一种结构化的模块化方法,将自动机描述为由许多组件组成的复杂系统,每个组件都实现了特定的功能。任何自动机都可以用作组件;使用特定的组件可以很好地控制自动机的表达性;使用Prime Automata作为组件表示特定的表达性保证。此外,将自动机指定为Cascades允许用其组件来描述自动机的样本复杂性。我们表明,样品复杂性在组件数量和单个组件的最大复杂性中是线性的,modulo对数因素是线性的。这开启了学习自动机的可能性,该自动机代表大型动力系统,这些动力系统由许多彼此相互作用。它与对自动机的样本复杂性的既定理解形成鲜明对比,这是根据状态和输入字母的总数描述的,这意味着只有可以在可用数据量中线性的状态数字来学习自动机。取而代之的是,我们的结果表明,可以使用许多可用数据量指数的状态学习自动机。

Every automaton can be decomposed into a cascade of basic prime automata. This is the Prime Decomposition Theorem by Krohn and Rhodes. Guided by this theory, we propose automata cascades as a structured, modular, way to describe automata as complex systems made of many components, each implementing a specific functionality. Any automaton can serve as a component; using specific components allows for a fine-grained control of the expressivity of the resulting class of automata; using prime automata as components implies specific expressivity guarantees. Moreover, specifying automata as cascades allows for describing the sample complexity of automata in terms of their components. We show that the sample complexity is linear in the number of components and the maximum complexity of a single component, modulo logarithmic factors. This opens to the possibility of learning automata representing large dynamical systems consisting of many parts interacting with each other. It is in sharp contrast with the established understanding of the sample complexity of automata, described in terms of the overall number of states and input letters, which implies that it is only possible to learn automata where the number of states is linear in the amount of data available. Instead our results show that one can learn automata with a number of states that is exponential in the amount of data available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源