论文标题

关于大规模CBCT重建的Krylov方法

On Krylov Methods for Large Scale CBCT Reconstruction

论文作者

Landman, Malena Sabate, Biguri, Ander, Hatamikia, Sepideh, Boardman, Richard, Aston, John, Schonlieb, Carola-Bibiane

论文摘要

Krylov子空间方法是线性方程式的迭代求解器的强大家族,由于其内在的正则化属性,通常用于反问题。此外,这些方法自然适合解决大规模问题,因为它们仅需要具有系统矩阵(及其伴随)的矩阵向量产品来计算近似解决方案,并且它们显示出非常快的收敛。即使在数值线性代数社区中对这类方法进行了广泛的研究和研究,它在应用医学物理和应用工程中的使用仍然非常有限。例如在现实的大规模计算机断层扫描(CT)问题中,更具体地说是锥形束CT(CBCT)。这项工作试图通过为适用于3D CT问题的最相关的Krylov子空间方法提供一般框架来阐明这一差距,其中包括最著名的非平方系统Krylov Solvers(CGLS,LSQR,LSMR),可能与Tikhonov正规化和定期量化的方法结合使用,可能与Tikhonov正规化和定期化的方法结合使用。这是在开源框架中提供的:基于GPU的层学迭代重建(Tigre)工具箱,其想法是促进介绍算法的可访问性和结果的可重复性。最后,提供了合成和现实世界3D CT应用程序(医学CBCT和μ-CT数据集)的数值结果,以展示和比较论文中介绍的不同Krylov子空间方法,以及它们对不同问题的适用性。

Krylov subspace methods are a powerful family of iterative solvers for linear systems of equations, which are commonly used for inverse problems due to their intrinsic regularization properties. Moreover, these methods are naturally suited to solve large-scale problems, as they only require matrix-vector products with the system matrix (and its adjoint) to compute approximate solutions, and they display a very fast convergence. Even if this class of methods has been widely researched and studied in the numerical linear algebra community, its use in applied medical physics and applied engineering is still very limited. e.g. in realistic large-scale Computed Tomography (CT) problems, and more specifically in Cone Beam CT (CBCT). This work attempts to breach this gap by providing a general framework for the most relevant Krylov subspace methods applied to 3D CT problems, including the most well-known Krylov solvers for non-square systems (CGLS, LSQR, LSMR), possibly in combination with Tikhonov regularization, and methods that incorporate total variation (TV) regularization. This is provided within an open source framework: the Tomographic Iterative GPU-based Reconstruction (TIGRE) toolbox, with the idea of promoting accessibility and reproducibility of the results for the algorithms presented. Finally, numerical results in synthetic and real-world 3D CT applications (medical CBCT and μ-CT datasets) are provided to showcase and compare the different Krylov subspace methods presented in the paper, as well as their suitability for different kinds of problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源