论文标题

矢量值Lipschitz代数及其第二个二元组的共同体学特性

Cohomological properties of vector-valued Lipschitz algebras and their second duals

论文作者

Mehdipour, M. J., Rejali, A.

论文摘要

令$ \ frak {f}(x,a)$为Banach代数$ \ hbox {Lip}(x,a)$或$ \ hbox {lip}(x,a)$。在本文中,我们表明$ \ frak {f}(x,a)$在且仅当$ x $均匀离散并且$ a $是可正常的情况下。我们还证明,结果适用于$ \ hbox {lip}^\ circ(x,a)$而不是$ \ frak {f}(x,a)$。在$ a^*$是可分离的情况下,我们确定$ \ frak {f}(x,a)^{**} $在且仅当$ x $均匀离散并且$ a^{**} $时才可以amen amen,但是,可正态,但是,$ \ hbox {lbox} {lbox}^i is的不合适性与公平( $ a^{**} $和$ x $的有限性。我们证明,如果$ \ hbox {lip}(x,a)$是(分别为弱),那么 $ x $是统一离散的,$ a $是(分别(弱))。尤其是,$ \ hbox {lip} x $在且仅当$ x $是离散的情况下是弱的。然后,我们研究了矢量值Banach代数$ C_0(x,a)$和$ l^1(g,a)$的共同体属性。最后,我们证明了$ a^{**} $的双原位性(分别为周期性弱的舒适性)表示$ a $的双向物品(分别为循环弱的不合适性)。当$ a $交换时,此结果适用于弱的舒适性和循环舒适性。

Let $\frak{F}(X, A)$ be one of the Banach algebras $\hbox{Lip}(X, A)$ or $\hbox{lip}(X, A)$. In this paper, we show that $\frak{F}(X, A)$ is amenable if and only if $X$ is uniformly discrete and $A$ is amenable. We also prove that the result holds for $\hbox{lip}^\circ(X, A)$ instead of $\frak{F}(X, A)$. In the case where $A^*$ is separable, we establish that $\frak{F}(X, A)^{**}$ is amenable if and only if $X$ is uniformly discrete and $A^{**}$ is amenable, however, amenability of $\hbox{lip}^\circ(X, A)^{**}$ is equivalent to amenability of $A^{**}$ and finiteness of $X$. We prove that if $\hbox{Lip}(X, A)$ is point (respectively, weakly) amenable, then $X$ is uniformly discrete and $A$ is point (respectively, weakly) amenable. In particular, $\hbox{Lip}X$ is weakly amenable if and only if $X$ is discrete. We then investigate cohomological properties for vector-valued Banach algebras $C_0(X, A)$ and $L^1(G, A)$. Finally, we prove that biprojectivity (respectively, cyclically weak amenability) of $A^{**}$ implies biprojectivity (respectively, cyclically weak amenability) of $A$. This result holds for weak amenability and cyclic amenability when $A$ is commutative.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源