论文标题
单个相机图像的自我监督手术仪器3D重建
Self-Supervised Surgical Instrument 3D Reconstruction from a Single Camera Image
论文作者
论文摘要
手术仪器跟踪是一个活跃的研究领域,可以提供有关其工具相对于解剖学的位置的外科医生反馈。最近的跟踪方法主要分为两个部分:分割和对象检测。但是,两者都只能预测2D信息,这限制了用于现实世界手术的应用。精确的3D手术仪器模型是对仪器姿势和深度进行精确预测的先决条件。最近的单视3D重建方法仅在自然对象重建中使用,并且在没有3D属性级监督的情况下无法达到令人满意的重建精度。此外,这些方法由于其伸长形状而不适合手术仪器。在本文中,我们首先提出了一个端到端的手术仪器重建系统 - 自学手术仪器重建(SSIR)。使用SSIR,我们提出了一种多周期抗性策略,以帮助从纤细仪器中捕获纹理信息,同时仅需要二进制仪器标签图。实验表明,与其他自我监督方法相比,我们的方法提高了手术工具的重建质量,并取得了有希望的结果。
Surgical instrument tracking is an active research area that can provide surgeons feedback about the location of their tools relative to anatomy. Recent tracking methods are mainly divided into two parts: segmentation and object detection. However, both can only predict 2D information, which is limiting for application to real-world surgery. An accurate 3D surgical instrument model is a prerequisite for precise predictions of the pose and depth of the instrument. Recent single-view 3D reconstruction methods are only used in natural object reconstruction and do not achieve satisfying reconstruction accuracy without 3D attribute-level supervision. Further, those methods are not suitable for the surgical instruments because of their elongated shapes. In this paper, we firstly propose an end-to-end surgical instrument reconstruction system -- Self-supervised Surgical Instrument Reconstruction (SSIR). With SSIR, we propose a multi-cycle-consistency strategy to help capture the texture information from a slim instrument while only requiring a binary instrument label map. Experiments demonstrate that our approach improves the reconstruction quality of surgical instruments compared to other self-supervised methods and achieves promising results.