论文标题

部分可观测时空混沌系统的无模型预测

On powers of countably pracompact groups

论文作者

Tomita, Artur Hideyuki, Trianon-Fraga, Juliane

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In 1990, Comfort asked: is there, for every cardinal number $α\leq 2^{\mathfrak{c}}$, a topological group $G$ such that $G^γ$ is countably compact for all cardinals $γ<α$, but $G^α$ is not countably compact? A similar question can also be asked for countably pracompact groups: for which cardinals $α$ is there a topological group $G$ such that $G^γ$ is countably pracompact for all cardinals $γ< α$, but $G^α$ is not countably pracompact? In this paper we construct such group in the case $α= ω$, assuming the existence of $\mathfrak{c}$ incomparable selective ultrafilters, and in the case $α= κ^{+}$, with $ω\leq κ\leq 2^{\mathfrak{c}}$, assuming the existence of $2^{\mathfrak{c}}$ incomparable selective ultrafilters. In particular, under the second assumption, there exists a topological group $G$ so that $G^{2^\mathfrak{c}}$ is countably pracompact, but $G^{(2^{\mathfrak{c}})^{+}}$ is not countably pracompact, unlike the countably compact case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源